

5

In situ LA-ICPMS U-Pb dating of Sulfates: Applicability of carbonate reference materials as matrix-matched standards

Aratz Beranoaguirre^{1,2,3,4}, Iuliana Vasiliev⁵, Axel Gerdes^{2,3}

¹ Institut für Angewandte Geowissenschaften, Karlsruher Institut für Technologie, Adenauerring 20 b, 76131 Karlsruhe, Germany

² Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
 ³ Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Frankfurt am Main, Germany

⁴ Caslosis Soile, Euskel Hamilto Uniberteitetes HDV/EUH, Somiene 7/2, 48040 Leise, Spein

⁴ Geologia Saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena z/g, 48940 Leioa, Spain

⁵ Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany

10 Correspondence to: Aratz Beranoaguirre (beranoaguirre@fierce.uni-frankfurt.de)

Abstract. Recent developments on analytical capabilities in the field of in situ laser ablation mass spectrometry (LA-ICPMS) have expanded the applications of U-Pb geochronometers in low-U minerals such as carbonates or garnets. Although the rapid evolution of the technique relies on well characterized matrix-matched reference materials, the use of non-matrix-matched standards has been evaluated given the unavailability of standards for some minerals. In this article, we explore the suitability

- of using carbonate as reference materials for in situ U-Pb dating of sulfates. We have used the astrochronologically dated gypsum and anhydrite samples deposited during the Messinian Salinity Crisis (5.97 - 5.33 Ma) and compared these dates with the U-Pb ages obtained by LA-ICPMS. Although the majority of the samples failed due to the elevated common-Pb content and low ²³⁸U/²⁰⁴Pb ratios, five of the samples showed a higher dispersion on U/Pb ratios. The obtained dates in four of these samples are comparable with the expected ages while another gave an unexpected younger age, each of them with 6-11% of
- 20 uncertainty. The pit depth of the spots showed that the sulfates ablate faster than carbonates, but the offset due to the crater geometry mismatch or downhole fractionation is not noticeable. To sum up, the bias between the U-Pb and expected cyclostratigraphic ages, if any, is included in the uncertainty and thus, the results obtained here suggest that carbonate reference materials are reliable for in situ U-Pb dating of sulfates.

1 Introduction

- 25 Latest years developments in instrumentation and analytical capabilities of LA-ICPMS techniques have widely opened the applicability of the U-Pb geochronometer. The high spatial resolution, low cost of analysis and high throughput with relatively good precision (Schaltegger et al., 2015) achievable with the new generation of laser and mass spectrometers favour the study of minerals with low and heterogeneous U concentrations like carbonates or garnets (e.g. Roberts et al., 2020). In fact, carbonate geochronology has gone from scarce publications that involve tedious and long-lasting isotope dilution techniques
- 30 (e.g., Brannon et al., 1996; Grandia et al., 2000; Woodhead et al. 2006, 2012) to a bloom of dozens of publications per year (extensive review in Roberts et al., 2020). Likewise, garnet U-Pb dating is rapidly developing and skarn or metamorphic

garnets, with U contents even below 100 parts per billion (e.g., Burisch et al., 2019; Yan et al., 2020; Millonig et al., 2020). In addition, several laboratories have started to investigate the possibility of measuring other types of minerals: dolomites (Burisch et al., 2017), fluorite (Piccione et al., 2019; Lenoir et al., 2021), nacrite (Piccione et al., 2019) or anatase (Sindern et

- 35 al., 2019), among others.
 - The rapid evolution of U-Pb dating in low-U phases is closely related to the publication and availability of reference materials (WC-1 carbonate, Roberts et al., 2017; or Mali garnet, Seaman et al., 2017). Well-characterized matrix-matched reference material is essential for U-Pb analytical techniques using ion or laser probes as it is affected by matrix effects (Sylvester, 2008; Yang et al., 2018). Indeed, LA-ICPMS dates could only be as good as the homogeneity of the reference materials, the accuracy
- 40 and precision to which such material is known (Schaltegger et al., 2015). However, several authors have appraised the suitability of using non-matrix-matched standards, with different levels of success. Deng et al. (2017) and Wafforn et al. (2018) used 91500 respectively GJ1 zircon to correct U/Pb fractionation of garnet and argued that they get accurate ages, whereas Yang et al. (2018) found that the ages of garnets were 11 % older when standardizing to zircon. Similarly, Parrish et al. (2018) measured the Mud Tank zircon within carbonate analyses and they observed a bias between zircon and calcite of c. 4.7%. Due
- 45 to the lack of an appropriate matrix-matched standard, Piccione et al. (2019) used the WC-1 carbonate reference material for fluorite analysis assuming that the bias between calcite and fluorite may likely be less than the one between calcite and zircon. This study aims to examine the suitability and reliability of using carbonates as reference material for dating sulfates. For such purpose, we have analysed astrochronologically dated gypsum and anhydrite samples from the Messinian Salinity Crisis (MSC) in the Mediterranean Sea (Roveri et al., 2014a, 2014b; Vasiliev et al., 2017; Grothe et al., 2020; Andreetto et al., 2021).
- 50 Chronostratigraphy of Late Miocene to Early Pliocene within the MSC is well constrained (CIESM, 2008; Manzi et al., 2013, Roveri et al., 2014a) and thus, makes those samples ideal for comparison purposes. Gypsum (CaSO₄·2H₂O) and Anhydrite (CaSO₄) are the two most abundant sulfates of marine and non marine evaporite deposits (e.g. Murray, 1963; Babel and Schreiber, 2014). Sedimentary gypsum forms by direct precipitation out of water evaporation under arid climatic conditions in hydrologically restricted environments. Under terrestrial evaporitic conditions, gypsum is the dominant primary mineral and
- 55 anhydrite forms through gypsum dehydration caused during diagenesis. In the presence of water at shallower levels, the anhydrite is rapidly converted back to gypsum (e.g. Conley and Bundy, 1958; Murray, 1964; Ossorio et al., 2014; Warren, 2016). Although less frequent, non-evaporitic gypsum formation can also take place (see Van Driessche et al., 2019 and references therein). Accurate U-Pb dating of sulfates could contribute to a better understanding of their formation and/or transformation (hydration-dehydration) processes within different geological events.

60 2 Geological Background

The Messinian Salinity Crisis (MSC; 5.97-5.33 Ma) successions record extreme fluctuations in the Mediterranean's paleoceanographic and environmental conditions (e.g. Hsü et al., 1973; Krijgsman et al., 1999; Manzi et al., 2013). At the end of the Miocene, the Mediterranean's connections with the Atlantic Ocean were extremely reduced (e.g. Flecker et al., 2015;

Krijgsman et al., 2018) whereas the freshwater supply from the Eastern Paratethys increased (Flecker and Ellam, 2006;
Krijgsman et al., 2010). Those paleoceanographic changes lead to the formation of hypersaline water bodies and the deposition of a kilometre-thick evaporite unit (Fig. 1A) (Ryan, 2009). The original definition of the MSC referred to a marked environmental change at the base of the Tripoli diatomite formation close to the Tortonian/Messinian boundary (Selli, 1960). Astronomical tuning of the pre-evaporitic succession showed that the MSC onset was synchronous throughout the Mediterranean (e.g., Krijgsman et al., 1999; Manzi et al., 2018; Meilijson et al., 2018). According to the shallow water-deep basin model (Hsü et al., 1973; Roveri et al., 2014a), evaporite precipitation was associated with a sea-level drop in the range of 1500 m, up to the almost complete desiccation of the Mediterranean; culminating in halite precipitation and marked by the

incisions of deep canyons at the Mediterranean margins. In the latest years, however, a non-evaporitic gypsum formation during MSC is increasingly mentioned. Isotope analyses of gypsum hydration water and the salinity of fluid inclusions in MSC gypsum indicate large freshwater inputs during gypsum formation (Natalicchio et al., 2014; Evans et al., 2015; Costanzo et

al., 2019). Additionally, suggestions of the important role of sulfur-oxidizing bacteria in biogeochemically meditated gypsum formation (Grothe et al., 2020) is increasingly used to explain a low salinity, yet high concentrations of Ca^{2+} and SO_2^{-4} (cf. Clauer et al., 2000), during the formation of MSC evaporites.

According to previous publications (Roveri et al., 2008a, 2008b and 2014a), the MSC can be separated into three main stages (Fig. 1B). Stage I (5.97-5.60Ma), the so-called Primary Lower Gypsum (PLG; Lugli et al., 2010), is defined by the deposition

80 of primary selenite gypsum unit. During the stage II (5.60-5.55 Ma), large evaporite deposits occurred (Resedimented Lower Gypsum unit, RLG), which includes halite, gypsum cumulates and brecciated limestones ('Calcare di Base' type 3; Manzi et al., 2011). Likewise, clastic gypsum derived from the dismantlement of the PLG unit can be also found within this stage. Finally, alternating gypsum (mainly bottom grown selenite and cumulate) and fine- to coarse-grained terrigenous deposits form the Upper Gypsum unit (UG; stage III, 5.55-5.33 Ma). There is no outcrop where the complete section of the MSC can

85 be observed, but different segments are well exposed throughout the Mediterranean

3 Methodology

U-Pb data was acquired in situ in polished mounts and slabs using a RESOLution 193 nm ArF excimer laser (CompexPro 102) equipped with a two-volume ablation cell (Laurin Technic S155) coupled to a (I) sector field ICPMS (ElementXR, ThermoScientific) or (II) multicollector ICPMS (Neptune Plus, ThermoScientific) at FIERCE (Frankfurt Isotope & Element

Research Center), Goethe University Frankfurt. The method is modified after Ring and Gerdes (2016) and Burisch et al. (2017).
 Samples are pre-screened in order to identify sub-zones with the higher ²³⁸U/²⁰⁶Pb ratio before each analytical session.

Fig. 1: A) Geological sketch of the Messinian evaporites deposits along the Mediterranean Sea (modified after Rouchy and Caruso, 2006). Note that only the successfully dated sample locations are shown. B) Chronostratigraphy of Late Miocene to Early Pliocene with MSC events in the Mediterranean (modified from Vasiliev et al., 2017).

Previous to the measurements in each of the instruments, signal strength at the ICPMS was tuned for maximum sensitivity while keeping oxide formation below ~ 0.5 % (UO/U) and element fraction low (e.g. Th/U ~ 0.9). The average sensitivity for the SRMNIST614 reference material in the Element XR and Neptune Plus was ca. 700,000 cps/ppm and 6 mV/ppm for ²³⁸U, respectively. In the case of the Element XR spectrometer, the detection limits (4 x background signal) for ²⁰⁶Pb and ²³⁸U were c. 0.3 and 0.03 ng/g. During 36 s data acquisition, the signal of ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th and ²³⁸U were detected by peak jumping in pulse counting mode. On the other hand, the detection limits in the multicollector ICPMS, were c. 0.3 and 0.5 ng/g for ²⁰⁶Pb and ²³⁸U, respectively. The analyses were done in the static multicollection mode measuring the masses ²⁰⁶Pb and ²³²Th and ²³⁸U with the Faraday cups attached to 10¹³ Ω amplifiers. The cup intensity measured in volts is converted into cps by multiplication by a factor of 62,400. In both cases, soda-lime glass SRMNIST 614 was used as primary reference material (RM) to correct for mass bias and drift over time together with three carbonate RMs, which were bracketed in between the

analysis of samples. A summary report of the U-Pb dating procedures are presented in Tables 1 and 2.

Raw data were corrected offline using an in-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Following background and interferences corrections, outliers ($\pm 2\sigma$) were rejected based on the time-resolved ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U

- 110 ratios and the Pb and U signal. Additional matrix correction was applied to the sulfates (sector field instrument: 4.5 %; multicollector sequence 1: 8 %, sequence 2: 0.5 %, sequence 3: no offset, sequence: no offset), which was determined using WC-1 carbonate RM (254.4 \pm 6.4 Ma; Roberts et al., 2017). The ²⁰⁶Pb/²³⁸U downhole fractionation during 16/18 s depth profiling was estimated to be 3%, based on the common Pb corrected WC-1 analyses, and was applied as an external correction to all sulfate analyses. Uncertainties for each isotopic ratio are the quadratic addition of the within run precision, counting
- 115 statistic uncertainties of each isotope, and the excess of variance (Horstwood et al., 2016) calculated from the SRMNIST 614 and the WC-1 after drift correction. To account for the long-term reproducibility of the method we added by quadratic addition an expanded uncertainty of 1.5% to the final age of all analysed samples. This was deducted from repeated analyses of ASH-15D in the FIERCE laboratory between 2017 and 2019. Reference material ASH-15D (2.965 \pm 0.011 Ma, Nuriel et al., 2021) and B-6 (42.99 \pm 0.99 Ma; Pagel et al., 2018) were measured for quality control. In addition, an in-house RM was analysed
- 120 during the first two sequences measured with the multicollector. Results on the secondary RM imply an accuracy and repeatability of the method of about 1.5 to 2%.. Data were displayed in Tera-Wasserburg plots and ages were calculated as lower Concordia-curve intercepts using the same algorithms as Isoplot 4.15 (Ludwig, 2012). All uncertainties are reported at the 2σ level. After the analysis, the depth of the ablation pit was measured in several spots per sample; including the WC-1 carbonate RM, using the Keyence VHX 6000 digital microscope.

Laboratory & Sample Preparation	
Laboratory name	FIERCE, Frankfurt Isotope & Element Research Center
Laboratory name	Goethe Univesität, Frankfurt am Main
Sample type/mineral	Sulphate
Sample preparation	25 mm polished resin mounts
Imaging	Petrographic microscope & 2400 dpi digital scan
Laser ablation system	
Make, Model & type	RESOlution ArF excimer laser (COMpex Pro 102)
Ablation cell	Two-volume ablation cell (Laurin Technic S155)
Laser wavelength	193 nm
Pulse width	20 ns
Fluence	2 J/cm ²
Repetition rate	10 Hz
Pre-ablation	4 pulses (same parameters as main ablation)
Ablation duration	
Ablation rate	$\sim 0.6 \mu\text{m/s}$ (in the primary RM)
Spot shape & size	Round, 154 µm (diameter)
Sampling mode	Static spot ablation
Gasses	Sample cell: He. Funnel: He + Ar. Tubbing: He + Ar + N $H_{2}(200 \text{ m}/\text{min}) = A_{2}(1050 \text{ m}/\text{min}) = N(8 \text{ m}/\text{min})$
CB MS Instrument	He (500 hu/huh), AI (1050 hu/huh), N (8 hu/huh).
Make Model & type	ThermoScientific ElementXr sector field ICP_MS
Sample introduction	Ablation aerosol
PE power	1300 W
	Secondary electron multiplier (with conversion dynode at -8kV)
	Simultaneous analogue and counting (pulse) modes of detection (conversion
Detection system	factors calculated per mass and applied offline). Magnetic field fixed.
	Detection by peak jumping with electrostatic analyzer.
Masses measured	206, 207, 232, 238
Dwell times	206: 6.4 ms, 207: 7.5 ms, 232: 2.0 ms, 238: 4.6 ms
Samples per peak/integration type	4 for all masses/average
Total time per run	99 ms
Number of runs/total time	370 / 36.6 s
Acquisition mode	Trigger from laser (20 s after pre-ablation), background: 18 s, ablation: 18 s
Dead time	29 ns
Data Processing	
Gas blank	20 s on-peak zero subtracted.
Calibration strategy	NIST SRM-614 as primary RM, WC-1 as offset RM, and ASH15D as validation RM.
Reference Material (RM) information	Soda-lime glass NIST SRM-614, WC-1 (Roberts et al., 2017), ASH15D (Vaks et al., 2003)
	In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009).
Data processing / LIEF correction	Intercept method for LIEF correction, assumes cPb corrected WC-1 and
	samples behave identically.
Mass discrimination	²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard
Common-Pb correction	No common-Pb correction applied to the data.
	Uncertainties are quoted at 28 absolute and are propagated by quadratic
	addition of the within run precision (SD of the mean of ratios in log-ratio
	space), counting statistics, background, common Pb correction (if applicable)
Uncertainty level & propagation	and the excess of scatter (calculated from the primary RM). In addition, an
cheertainty level & propagation	excess of variance of 1.45 % (1 δ), calculated from the offset RM, was added
	quadratically to the 206Pb/238U ratios. Systematic uncertainties are reported as
	an expanded uncertainty, considering long term reproducibility (1.5%, 2\delta) and
	decay constant uncertainties.
	WC-1: 254.7 ± 2.3 / 4.4 Ma (2s, MSWD = 1.00, n = 28)
Quality control / Validation	ASH15D: 3.004 ± 0.153 / 0.159 Ma (2s, MSWD = 0.85, n = 28)
Zamey cond of / vandation	(Ages are the 206Pb/238U lower intercept ages of the calculated isochrons with
	the concordia curve in the Tera-Wasserburg space)

125

 Table 1: LA-SF-ICPMS U-Pb analysis procedure at Goethe University Frankfurt, FIERCE laboratory.

Laboratory & Sample Preparation	
Laboratory name	FIERCE, Frankfurt Isotope & Element Research Center
	Goethe Univesität, Frankfurt am Main
Sample type/mineral	Sulphate
Imaging	Petrographic microscope & 2400 dpi digital scan
Laser ablation system	
Make, Model & type	RESOlution ArF excimer laser (COMpex Pro 102)
Ablation cell	Two-volume ablation cell (Laurin Technic S155)
Laser wavelength	193 nm 20 m
Fluence	20 Is
Repetition rate	2 J/cm
Pre-ablation	2 pulses (same parameters as main ablation)
Ablation duration	16 s
Ablation rate	~ 0.6 µm/s (in the primary RM)
Spot shape & size	Round, 130 µm (75 µm for primary RM)
Sampling mode	Static spot ablation
Gas flows	Sample cell: He. Fulliel: He + Ar. Tubbing: He + Ar + N He (300 ml/min) Ar (950 ml/min) N (ml/min)
ICP-MS Instrument	
Make, Model & type	ThermoScientific Neptune Plus multi-collector ICP-MS
Sample introduction	Ablation aerosol
RF power	1300 W
	Simultaneous multi-collection.
Detection system	Multiple ion Counter (MIC) for Hg, "Pb, "Pb and "Pb.
Massas magginad	Faraday cups with 10° \$2 amplifiers for 22Th and 28U
Total time per run	202, 204, 200, 207, 232, 238
Number of runs/total time	230 / 30.1 s
Acquisition mode	Trigger from laser (14 s offer pro shlation) bestground: 11 s, shlation: 16 s
	migger nonnaser (14 s aner pre-abrauon), background. 11 s, abrauon. 10 s
Data Processing	11 c en mach man automated
Gas brank	NIST SRM-614 as primary RM, WC-1 as offset RM, and ASH15D, B6 & in-
Calibration strategy	house calcite as validation RM.
	Soda-lime glass NIST SRM-614, WC-1 (Roberts et al., 2017), ASH15D
Reference Material (RM) information	
Reterence Material (RM) information	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM)
Reterence Material (RM) information	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009).
Reterence Material (RM) information Data processing / LIEF correction	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically.
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Ph/ ²⁰⁸ Ph (0.2%) and ²⁰⁶ Ph/ ²⁸⁸ U (5%) normalised to primary standard
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data.
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. $^{207}\text{Pb}/^{206}\text{Pb}$ (0.2%) and $^{206}\text{Pb}/^{238}\text{U}$ (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. $^{207}\text{Pb}/^{206}\text{Pb}$ (0.2%) and $^{206}\text{Pb}/^{238}\text{U}$ (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the reme of control of the fore the originary DND. Not dedition and the order of th
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM was
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added madratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties.
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁵ Pb (0.2%) and ²⁰⁵ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties.
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 26) and decay constant uncertainties. Sequence 1: WC-1: $254.8 \pm 1.9/4.3$ Ma (2s, MSWD = 1.0 , n = 12) R 6.4 27 37 4 0.59 (0.87 Ma (2e MSWT) = $0.94.$ n = 12)
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁸ Pb (0.2%) and ²⁰⁸ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraur, 367.2 ± 1.2 / 1.4 SMa (2s, MSWD = 0.89, n = 12)
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	$ (Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) \\ In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). \\ Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. \\ 207Pb/206Pb (0.2%) and 206Pb/238U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated for each sequence from the offset RM, was added quadratically to the 206Pb/238U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2:$
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for esquence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 1.0, n = 20)
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. 207Pb/206Pb (0.2%) and 206Pb/238U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the 206Pb/238U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 26) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraum: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 1.0, n = 20) B-6: 42.66 ± 0.47 / 0.80 Ma (2s, MSWD = 1.0, n = 22) B-6: 42.66 ± 0.47 / 0.80 Ma (2s, MSWD = 0.50, n = 22) B-6: 42.66 ± 0.47 / 0.80 Ma (2s, MSWD = 0.50, n = 22)
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 2δ) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraum: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 1.0, n = 20) B-6: 42.66 ± 0.47 / 0.80 Ma (2s, MSWD = 0.50, n = 22) CalBraum: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22)
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 12) B-6: 42.75 ± 0.55 / 0.85 Ma (2s, MSWD = 0.61, n = 20) B-6: 42.75 ± 0.55 / 0.85 Ma (2s, MSWD = 0.61, n = 20) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 20) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 20) Sequence 4: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 20) Sequence 5: Sequence 5: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 20) Sequence 5: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 20) Sequence 5: Sequence 5: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 20) Sequence 5: Sequence 5: Seq
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁴⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: $254.8 \pm 1.9/4.3$ Ma (2s, MSWD = 1.0 , n = 12) B-6: $42.73 \pm 0.59/0.87$ Ma (2s, MSWD = 0.84 , n = 12) CalBraun: $36.72 \pm 1.23/1.35$ Ma (2s, MSWD = 0.89 , n = 12) Sequence 2: WC-1: $254.1 \pm 2.0/4.4$ Ma (2s, MSWD = 1.0 , n = 20) B-6: $42.66 \pm 0.47/0.80$ Ma (2s, MSWD = 1.0 , n = 22) CalBraun: $36.07 \pm 0.65/0.85$ Ma (2s, MSWD = 0.61 , n = 22) Sequence 3: WC-1: $254.5 \pm 3.2/5.0$ Ma (2s, MSWD = 0.61 , n = 22) Sequence 3: WC-1: $254.5 \pm 3.2/5.0$ Ma (2s, MSWD = 1.0 , n = 10) ASH15D: $3.060 \pm 0.193/0.198$ Ma (2s, MSWD = 1.0 , n = 10)
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. 207Pb/206Pb (0.2%) and 206Pb/238U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the 206Pb/238U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-11: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-11: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-11: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-11: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 1.0, n = 10) ASH15D: 3.060 ± 0.193 / 0.198 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) B-6: 43.54
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. 247Pb/206Pb (0.2%) and 246Pb/258U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated for each sequence from the offset RM, was added quadratically to the 206Pb/258U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.50, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 1.0, n = 10) ASH15D: 3.060 ± 0.193 / 0.198 Ma (2s, MSWD = 1.0, n = 10) ASH15D: 3.060 ± 0.193 / 0.198 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) Sequence 4:
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 10) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 10) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 10) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 40.79 / 1.02 Ma (2s, MSWD = 1.0, n
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for esquence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 \pm 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 \pm 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraur: 36.72 \pm 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 \pm 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraur: 36.07 \pm 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 \pm 3.2 / 5.0 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 \pm 0.79 / 0.198 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 \pm 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) Sequence 4: WC-1: 254.5 \pm 1.6 / 4.1 Ma (2s, MSWD = 1.0, n = 20) B-6: 43.54 \pm 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 43.54 \pm 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 43.54 \pm 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 43.54 \pm 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) B-6: 43.54 \pm 0.39 / 0.77 Ma (2s, MSWD = 0.88, n = 20) B-6: 43.84 \pm 0.39 / 0.77 Ma (2s, MSWD = 0.88, n = 20) B-6: 43.84 \pm 0.39 / 0.77 Ma (2s, MSWD = 0.88, n = 20) B-6: 43.84 \pm 0.39 / 0.77 Ma (2s, MSWD = 0.88, n = 20)
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. 207Pb/206Pb (0.2%) and 206Pb/238U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 28 absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the 206Pb/238U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 1.0, n = 10) ASH15D: 3.060 ± 0.193 / 0.198 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) Sequence 4: WC-1: 254.5 ± 1.6 / 4.1 Ma (2s, MSWD = 1.0, n = 20) B-6: 43.84 ± 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) ASH15D: 3.091 ± 0.102 / 0.112 Ma (2s, MSWD = 0.68, n = 20) B-6: 43.84 ± 0.39 / 0.77 Ma (2s, MSWD = 0.56, n = 20) B-6: 43.84 ± 0.39 / 0.77 Ma (2s, MSWD = 0.56, n = 20) B-6: 43.83 ± 0.39 / 0.77 Ma (2s, MSWD = 0.56, n = 20) B-6: 43.83 ± 0.39 / 0.77 Ma (2s, MSWD = 0.56, n = 20) B-6: 43.83 ±
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁴⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 1.0, n = 10) ASH15D: 3.060 ± 0.193 / 0.198 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) Sequence 4: WC-1: 254.5 ± 1.6 / 4.1 Ma (2s, MSWD = 1.0, n = 20) ASH15D: 3.091 ± 0.102 / 0.112 Ma (2s, MSWD = 0.68, n = 20) ASH15D: 3.091 ± 0.102 / 0.112 Ma (2s, MSWD = 0.68, n = 20) B-6: 43.83 ± 0.39 / 0.77 Ma (2s, MSWD = 0.56, n = 20) (Ages are the ²⁰⁶ Pb/ ²³⁸ U lower intercept ages of the calculated isochrons with
Reference Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁴⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 2δ) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9/4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0/4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 0.61, n = 10) ASH15D: 3.060 ± 0.193 / 0.198 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.13, n = 10) Sequence 4: WC-1: 254.5 ± 1.6/4.1 Ma (2s, MSWD = 1.0, n = 20) ASH15D: 3.091 ± 0.102 / 0.112 Ma (2s, MSWD = 0.68, n = 20) ASH15D: 3.091 ± 0.102 / 0.112 Ma (2s, MSWD = 0.68, n = 20) B-6: 43.83 ± 0.39 / 0.77 Ma (2s, MSWD = 0.56, n = 20) (Ages are the ²⁰⁶ Pb/ ²³⁸ U lower intercept ages of the calculated isochrons with the concordia curve in the Tera-Wasserburg space. WC-1 RM are anchored at
Reterence Material (RM) information Data processing / LIEF correction Mass discrimination Common-Pb correction Uncertainty level & propagation Quality control / Validation	(Vaks et al., 2003), B-6 (Pagel et al., 2018), Calgrun (in-house calcite RM) In-house VBA spreadsheet program (Gerdes and Zeh, 2006, 2009). Intercept method for LIEF correction, assumes cPb corrected WC-1 and samples behave identically. ²⁰⁷ Pb/ ²⁰⁶ Pb (0.2%) and ²⁰⁶ Pb/ ²³⁸ U (5%) normalised to primary standard No common-Pb correction applied to the data. Uncertainties are quoted at 2δ absolute and are propagated by quadratic addition of the within run precision (SD of the mean of ratios in log-ratio space), counting statistics, background, common Pb correction (if applicable) and the excess of scatter (calculated from the primary RM). In addition, an excess of variance calculated for each sequence from the offset RM, was added quadratically to the ²⁰⁶ Pb/ ²³⁸ U ratios. Systematic uncertainties are reported as an expanded uncertainty, considering long term reproducibility (1.5%, 28) and decay constant uncertainties. Sequence 1: WC-1: 254.8 ± 1.9 / 4.3 Ma (2s, MSWD = 1.0, n = 12) B-6: 42.73 ± 0.59 / 0.87 Ma (2s, MSWD = 0.84, n = 12) CalBraun: 36.72 ± 1.23 / 1.35 Ma (2s, MSWD = 0.89, n = 12) Sequence 2: WC-1: 254.1 ± 2.0 / 4.4 Ma (2s, MSWD = 0.50, n = 22) CalBraun: 36.07 ± 0.65 / 0.85 Ma (2s, MSWD = 0.61, n = 22) Sequence 3: WC-1: 254.5 ± 3.2 / 5.0 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 10) B-6: 43.54 ± 0.79 / 1.02 Ma (2s, MSWD = 1.0, n = 20) ASH15D: 3.061 ± 0.193 / 0.198 Ma (2s, MSWD = 1.0, n = 20) ASH15D: 3.091 ± 0.102 / 0.112 Ma (2s, MSWD = 1.0, n = 20) B-6: 43.83 ± 0.39 / 0.77 Ma (2s, MSWD = 1.0, n = 20) ASH15D: 3.091 ± 0.102 / 0.112 Ma (2s, MSWD = 0.56, n = 20) (Ages are the ²⁰⁶ Pb/ ²³⁸ U lower intercept ages of the calculated isochrons with the concordia curve in the Tera-Wasserburg space. WC-1 RM are anchored at 0.85 value of ²⁰⁷ Pb/ ²³⁸ Pb)

 Table 2: LA-MC-ICP-MS U-Pb analysis procedure at Goethe University Frankfurt, FIERCE laboratory.

4 Samples and results

130 **4.1 U-Pb Dating**

135

U-Pb dating was applied to 32 samples from the different locations and all available gypsum/anhydrite varieties (large selenite crystals, bended selenite, gypsum cumulates, anhydrite, halite with gypsum and anhydrite intercalation) across the Mediterranean Sea (Fig. 1), which display variable contents of Pb and U (summary in Table 3). Only five of them are successfully dated. The undatable samples are characterized by analyses that clustered near the common Pb intercept, disclosing a large amount of common-Pb (Fig. 2). This low μ (²³⁸U/²⁰⁴Pb ratio) makes it impossible to draw any regression

line. No link between successful/unsuccessful samples and their texture could have been established and both successful and unsuccessful samples have been found within the same type of gypsum. The successfully dated samples are described below, and their results are presented in Figs. 3 and 4 as well as in Tables 4 and 5.

Sample	U content (µg/g)	U average	Pb content (µg/g)	Pb average	n	U/Pb max
5083839	0.04-1.48	0.43	0.02-1.83	0.51	34	3.75
5083851	0.01-1.20	0.14	0.00-0.68	0.10	57	27.62
Plegio 3a	0.15-0.59	0.38	0.91-8.31	3.72	16	0.28
RB11	0.00-1.79	0.55	0.01-1.07	0.27	40	19.83
EM5 G11	0.00-0.01	0.01	0.00-0.53	0.04	16	2.22
MTO 2-3	0.00-0.59	0.24	0.00-3.53	1.10	15	0.53
MTO 3-3	0.00-0.90	0.13	0.03-1.45	0.27	43	4.89
MTO 4-4	0.02-2.34	0.97	0.00-3.85	0.31	169*	98.4
MTO 9-5	0.01-4.65	2.96	0.00-3.09	1.99	31	3.55
MTO 11-3	0.01-5.49	1.94	0.00-0.97	0.27	95*	155
MTO 14-3	0.00-1.10	0.21	0.00-0.53	0.13	15	3.58
BCR 9538	0.26-3.92	1.52	0.12-1.34	1.21	37	6.7
BCR 9539	0.00-0.58	0.18	0.00-0.58	0.15	18	11.4
BCR 9542	0.05-3.94	1.73	3.50-142.33	46.35	15	0.81
BCR 9543	0.00-19.18	6.24	0.03-140.11	29.53	78	5.00
BCR 9551	0.08-1.44	0.51	0.06-1.00	0.29	40	22.8
BCR 9552	0.00-0.58	0.09	0.77-2.43	1.27	16	0.85
BCR 9555	0.00-0.09	0.01	0.00-0.75	0.12	15	0.21
BCR 9556	0.00-0.01	0.00	0.00-0.07	0.00	15	0.92
BCR 9643	0.05-0.54	0.23	0.45-7.51	2.80	18	1.01
BCR 9644	0.01-2.31	0.33	0.00-0.61	0.03	85*	577
BCR 9645	0.00-2.63	0.37	0.02-6.86	0.77	32	18.9
BCR 9647	0.21-6.50	1.27	0.07-4.79	0.81	77*	13.3
BCR 9649	0.01-1.24	0.51	0.02-3.19	0.49	40	2.56
BOX 16	0.01-0.08	0.02	0.01-0.29	0.10	20	2.01
BOX 58	0.05-0.40	0.12	0.03-0.25	0.07	33	4.16
BOX 60	0.07-0.44	0.20	0.06-0.56	0.18	31	2.34
BOX 74	0.01-0.78	0.37	0.01-2.39	0.39	71	3.90
BOX 76	0.15-0.61	0.35	0.39-2.86	1.12	26	1.89
BOX 107	0.00-0.16	0.03	0.01-0.11	0.05	12	5.70
BOX 108	0.03-5.70	1.52	0.01-1.67	0.28	126*	158
PU05	0.00-1.44	0.20	0.00-0.16	0.01	79*	219
* sum of m	ore than 1 day					

140 Table 3: Compilation of U and Pb contents in all the analysed samples.

4.1.1 Sample MTO 4-4

145

The MTO 4-4 sample was collected at Monte Tondo gypsum quarry, located within the Vena del Gesso basin (along the western Romagna Apennines), and belongs to the PLG (Lugli et al., 2007, 2010; Vasiliev et al., 2017). It is a banded selenite (type F4 of Lugli et al., 2010) and the cyclostratigraphic age is 5.920 Ma, close to the onset of the MSC. The sample was measured in three different sequences. The maximum U and Pb content on the analysed spots are 2.34 μ g/g and 3.85 μ g/g, respectively; depicting a maximum U/Pb ratio of 98.4 in the best case. The first of the sequences was measured with the SF-

ICPMS and the analyses define a regression line with a lower intercept at 6.01 ± 1.19 Ma (MSWD = 1.07, Fig. 3). The other two sequences were measured with the MC-ICPMS and the lower intercept of the regression lines are 5.55 ± 0.61 Ma (MSWD = 1.00, Fig. 4) and 5.73 ± 0.37 Ma (MSWD = 1.13, Fig. 4).

150

Fig. 2: Diagram showing U_{mean content}/Pb_{mean content} vs. maximum value on ²³⁸U/²⁰⁶Pb axis. The successfully dated samples have a distinctively higher U/Pb heterogeneity.

4.1.2 Sample MTO 11-3

This sample was also collected by Vasiliev et al., (2017) at the Monte Tondo gypsum quarry. It is a massive selenite (F3 of Lugli et al., 2010) and belongs to the younger cycles of the PLG. Its estimated cyclostratigraphic age is 5.701 Ma. MTO 11-3 was measured as well in three different sequences. The maximum U and Pb content on the analysed spots are 5.49 μ g/g and 0.97 μ g/g, respectively; depicting a maximum U/Pb ratio value of 155.2 in the best case. The first of the sequences was measured with the SF-ICPMS and the analyses define a regression line with a lower intercept at 5.40 ± 0.84 Ma (MSWD = 1.13, Fig. 3). The other two sequences were measured with the MC-ICPMS and the lower intercept of the regression lines are 5.46 ± 0.44 Ma (MSWD = 1.41, Fig. 4) and 5.55 ± 0.32 Ma (MSWD = 1.03, Fig. 4).

Fig. 3: Tera-Wasserburg diagram (²⁰⁷Pb/²⁰⁶Pb vs. ²³⁸U/²⁰⁶Pb) for the samples MTO 4-4 and MTO 11-3, measured with the sector field ICP-MS.

165 Fig. 4: Tera-Wasserburg diagram (²⁰⁷Pb/²⁰⁶Pb vs. ²³⁸U/²⁰⁶Pb) for the samples MTO 4-4, MTO 11-3, BOX 108, Pu 05 and BCR 9644. All of them were measured with the multicollector ICP-MS. Each of them was measured twice in two independent sequences.

4.1.3 Sample BOX 108

BOX 108 is a halite with anhydrite nodules. It comes from the borehole EMS-4 (Cattolica Eraclea) in the Caltanissetta Basin (southwest of Sicily) and was donated to Prof. Cita (University of Milano). The core was drilled from - 82 m to -665 m below
sea water level and the sample was located almost at the bottom (approximately at - 610 m). Cyclostratigrafic ages point to 5.55-5.60 Ma. The analyses were made both in halite and in anhydrite, but only the anhydrite was successful. It was measured twice with the MC-ICPMS. The maximum U and Pb content on the analysed spots are 5.70 μg/g and 1.67 μg/g, respectively; depicting a maximum U/Pb ratio value of 158.0 in the best case. The analyses define a regression line with a lower intercept at 5.55 ± 0.35 Ma (MSWD = 1.01, Fig. 4) in the first of the sequences and 5.54 ± 0.38 Ma (MSWD = 1.49, Fig. 4) in the

4.1.4 Sample BCR9644

The sample BCR9644 was collected from the cores of Deep Sea Drilling Program Site 42A hole 376 cored in 1975 West of Cyprus and stored at Bremen International Ocean Drilling Program repository. BCR9644 was collected from a Gypsum Breccia, at 170.28 m below sea level and has a stratigraphic age of ca. 5.55 - 5.60 Ma. It was measured twice with the MC-ICPMS. The maximum U and Pb content on the analysed spots are 2.31 μ g/g and 0.61 μ g/g, respectively; although Pb rarely exceeds 0.1 μ g/g. The maximum U/Pb ratio obtained in that sample is 577.5 in the best case. The low Pb contents imply large

error ellipses, but successful regression lines have been defined, with a lower intercept at 2.98 ± 0.34 Ma (MSWD = 0.79, Fig. 4) in the first of the sequences and 2.98 ± 0.32 Ma (MSWD = 1.40, Fig. 4) in the second.

4.1.5 Sample Pu 05

180

195

- 185 This sample was collected in the Ploutis region (Central Crete, Greece) and it is a gypsum breccia. The stratigraphic age of these gypsum units is disputed between being part of the PLG (Zachariasse et al., 2008) but the texture is direct capping by Lago Mare deposits strongly suggest that Pu 05 belongs to the UG unit. Its Cyclostratigraphic age is ca. 5.40 Ma. Pu 05 was also measured twice with the MC-ICPMS. The maximum U and Pb content on the analysed spots are 1.44 µg/g and 0.16 µg/g, respectively; depicting a maximum U/Pb ratio value of 158.0 in the best case. Each sequence define two a regression line with
- a lower intercept at 5.15 ± 0.42 Ma (MSWD = 0.68, Fig. 4) and 5.54 ± 0.61 Ma (MSWD = 1.02, Fig. 4), respectively.

4.2 Pit-depth measurements

After the analyses, pit-depths were measured in all the samples as well as in the carbonate reference materials. The measured pit-depth averages were used for calculating the U and Pb contents (Tables A4 and A5). The shape and depth of the craters in WC-1 primary carbonate are all similar and the average depth of them is $15.0 \,\mu m$ (SD = 1.34; n = 16). Few spots corresponding to the secondary reference materials were also checked and they are comparable to those of WC-1. The pit-depth of samples MTO 4-4 and MTO 11-3 is rather homogeneous with mean values of $29.6 \,\mu m$ (SD = 6.2; n = 44) and $18.9 \,\mu m$ (SD = 5.9; n =

37, Fig. 5A), respectively. The samples BCR 9644 and BOX 108 display zones with different heights in some of the ablation holes (Fig. 5B). Although they are exceptional, two ca. 90 μm and two ca. 60 μm pits were measured in BOX 108. Considering them, the average depth is 28.2 μm (SD = 16.4, n= 64) whereas excluding those four heights the standard deviation improves substantially (25.0 μm; SD = 8.8; n = 60). The average depth for the sample BCR 9644 is 16.2 μm (SD = 6.7; n=32) excluding two ca. 60 μm spots. On the other hand, the sample PU 05 shows higher variability and larger standard deviation, since the pit-depth varies from 29 μm to 107 μm. The calculated average is 62.6 μm (SD = 23.0; n = 48).

5 Discussion

5.1. High common-Pb content

- 205 The majority of the analyzed samples, 27 out of 32, were unsuccessful due to the high common-Pb content and hence, low or non-existent spread in the ²³⁸U/²⁰⁶Pb axis. Recent studies in the field of environmental hazard have shown that Pb tends to incorporate into sulfates, both gypsum and anhydrite (Astilleros et al., 2010; Morales et al., 2014; Kameda et al., 2017). In fact, in presence of high-Pb fluids anglesite (PbSO₄) is simultaneously intergrowth with those sulfates. The behaviour of uranium remains unknown, although experiments carried out on phosphogypsum, a waste by-product generated from apatite
- 210 in the production process of phosphoric acid and phosphate fertilizers, suggest that U uptake by gypsum is pH controlled (Lin et al., 2018). Thus, the more alkaline the environment is the higher U concentration could be expected in gypsum. However, the pH of evaporating seawater rarely reaches those values and tends to drop as the evaporation process goes on (Babel and Schreiber, 2014). Considering a low salinity, but high concentrations of Ca^{2+} and SO_2^{-4} (cf. Clauer et al., 2000) during the formation of MSC evaporites, the alkalinity of the depositional environment might have increased. In any case, even the
- 215 gypsum precipitated in U-rich environments like uranium mine tailings contain a high amount of Pb among other metals (Liu and Hendry, 2011).

The first set of samples was measured with the sector-field single-collector ICPMS (Element XR). The U and Pb contents in the samples are rather low and produce large error ellipses in every single spot. This issue, together with low μ ratios, produces substantial uncertainties in the final ages (Fig. 3) and a comparison with the depositional ages is meaningless. In order to

- 220 achieve better results, we decided to accomplish subsequent measurements with the multicollector ICPMS (Neptune Plus), which provides about three times better sensitivity and simultaneous isotope detection (Craig et al., 2018; 2020). The higher sensitivity implies smaller uncertainties in each spot and hence, more accurate and precise regression lines (i.e., ages) can be obtained. Indeed, the improvement in accuracy and precision is clearly illustrated in Figs. 3 and 4. For a similar spread in the 238U/206Pb axis, the uncertainties of ca. 15 % (MTO 11-3) or 20 % (MTO 4-4) obtained with the Element XR (Fig. 3) were
- reduced to 8 % (MTO 11-3, seq 2) and 11 % (MTO 4-4, seq 2) by using the Neptune Plus (Fig. 4).

Fig. 5: Pit-depth profile of the samples MTO 11-3 (a) and BCR 9644 (b). Whereas the pit shape is roughly homogeneous in the MTO 11-3, the sample BCR 9644 displays deeper areas in some of the pits. The profiles are measured using a Keyence digital microscope VHX-6000.

235

5.2 U-Pb ages vs cyclostratigraphic ages

Well-characterized matrix-matched reference material is essential for U-Pb analytical techniques using laser probes as matrix differences between sample and reference standard can cause a significant offset on the obtained ages (Yang et al., 2018; Guillong et al., 2020). However, in the absence of sulfates reference materials, an attempt to use carbonate reference standards was carried out, hoping low offset between both materials. The hardness of both gypsum and calcite is similarly low and

- therefore, we expected that matrix-induced offset was going to be significantly lower than the one observed between carbonate and zircon (4.7 %, Parrish et al., 2018). Furthermore, both the sulfates and carbonates are easily ablated with low energy (less than 2 J/cm2), in comparison with the higher ablation energy used in some other materials, like fluorite, which needs 3 times more energy of ablation than carbonate. Nonetheless, Piccione et al. (2019) obtained analogous ages on contemporary fluorite and nacrite, both corrected to the same carbonate reference material.
- The cyclostratigraphic ages of the MSC samples are known and we have used them for testing the suitability of the corrections with respect to carbonate matrix. As pointed out above, the majority of the samples contain a significant amount of common-Pb and only five ages were obtained. Although the μ of those samples was not extreme, the uncertainties range between 6 to 11 %. The ages obtained for the samples MTO 4-4, MTO 11-3, Pu 05 and BOX 108 are fully in accordance with the
- 245 cyclostratigraphic ages (e.g. Lugli et al., 2007; Vasiliev et al., 2017). Unfortunately, the level of precision makes it impossible to discern whether the ages correspond to depositional or diagenetic/dehydration stages of the evaporites formation. Likewise, it is not possible to distinguish the three different stages of evaporite deposits of the MSC. Regardless, no matrix offset between sulfate and carbonate can be observed, and if any, this is included in the uncertainty.
- On the other hand, the sample BCR 9644 resulted in an unexpected younger age of ca. 3 Ma. The brecciated nature of the sample, together with its extremely low Pb content (0.03 µg/g on average) in comparison with surrounding samples (BCR9643 and BCR 9645, Table A3) suggest a subsequent (re)crystallization and remobilization of U and Pb that could be related to the breccia formation. Warthman et al. (2000) proposed an important bacterial activity after the evaporites formation. For the equivalent in time Site 374, located South-East Sicily, an ~3 m thick dolomitization front in Pliocene hemipelagic succession overlying the UG was identified. Here, an alleged role of the deep biosphere, sulfate-reducing bacteria thriving on the
- 255 dissolution of sulphate bearing minerals (Warthman et al., 2000; Petrash et al., 2017) was suggested. Montano et al. (2019) showed that biological activity may control the U-Pb partitioning on carbonates, so the connection between the bacterial activity and the 3 Ma age could not be discarded. Another possible scenario could be a gypsum to anhydrite to gypsum (two-step) transformation; but there is no observation neither in the literature, that supports this hypothesis.

5.3 Pit-depth profiles

Guillong et al. (2020) showed that different ablation parameters produce distinctive pit profiles (the so-called "aspect-ratio" or depth/diameter ratio) and it could result in a noticeable bias of the data. The samples analyzed here were all ablated with the same 130 µm spot-size, but whereas the carbonate standards result in a depth of ca. 15 µm (aspect-ratio of 0.12) the sulfates

vary between 16 μ m and 63 μ m (aspect-ratio between 0.12 and 0.48, Fig. 5). This divergence between the sulfates could be devoted to various non-excluding features such as different texture, particle size, porosity or compaction (Elisha et al., 2021).

- 265 However, in the samples with a degree of crater geometry mismatch of less than 2 relative to the primary standard a deviation lower than 5% is anticipated (Guillong et al., 2020) which lies into the final result uncertainty. The larger aspect-ratio discordancy observed in the sample Pu 05 could result in age offsets up to 10%. Fig. 5b reveals an important heterogeneity in the pit profile in some samples, with a silhouette that resembles pores. Whatever they correspond to porosity or chunks released due to badly coupled laser beam, nothing strange was observed in the signal.
- 270 These aspect-ratio and pit-depth issues are also related to the downhole fractionation corrections. Mangenot et al. (2018) claimed that shallow pit-depth compared to the spot size could minimize the downhole fractionation. That argument could apply to our reference materials and sulfates with shallower pit-depth, but how it affects depths beyond 50-60 µm can be arguable. Indeed, Lenoir et al., (2021) obtained coherent regression lines in fluorites even with pit-depths (up to 50 % variable) larger than spot sizes. Notwithstanding, the lack of bias between our U-Pb ages and cyclostratigraphic ages suggest that the
- 275 different downhole fractionation are not noticeable or remain within the uncertainties.

6 Conclusions

In this contribution, we have evaluated the applicability of carbonates as matrix-matched reference materials for U-Pb dating of sulfates and for that purpose, gypsum and anhydrite samples from the Messinian Salinity Crisis were analysed. The known cyclostratigraphic ages of these evaporites were compared with the in situ U-Pb ages obtained. The samples showed a high amount of common-Pb and low spread in the U/Pb axis and therefore, we were forced to switch from the SF-ICPMS to MC-ICPMS in order to improve the uncertainties of the measurements. Only five samples were successfully dated. Four of them lied on the expected ages within error, while the other was considerably younger. We assume that all the factors that could produce a bias in the final age, if any, are contained in the uncertainty and therefore, the use of carbonate reference materials could be a trustworthy approach for in situ U-Pb dating of sulfates. We acknowledge that the availability of sulfate reference materials in the future will result in an improvement of both, reliability and precision.

Table 4: U-Pb data of the LA-SF-ICP-MS measurements.

number sample (cps) (ppm) <	Analysis	name /	²⁰⁷ Ph ^a	U ^b	Pb ^b	Th⁵	²³⁸ U ^c	+2σ	²⁰⁷ Pb ^c	+2σ	
U436 MTO 4.4 11732 0.075 0.027 0.17 11.66 12 0.8208 3.2 U438 197284 0.26 0.46 0.32 2.043 15 0.8269 0.80 U448 28825 0.034 0.066 0.33 1.942 22 0.8350 1.6 U449 25729 0.52 0.058 0.14 3.439 8.4 0.8024 1.6 U450 10535 0.34 0.024 0.11 51.35 7.2 0.8019 1.8 U451 103061 0.97 0.23 0.37 15.87 1.1 0.817 0.817 0.8266 0.50 U455 813450 1.1 1.9 0.13 8.870 15 0.8261 0.57 U453 137835 0.92 0.35 0.13 8.870 15 0.8261 0.827 0.839 0.17 1.85 0.8240 0.85 0.8230 0.77 0.460 0.32 0.26 </td <td>number</td> <td>sample</td> <td>(cps)</td> <td>(ppm)</td> <td>(ppm)</td> <td>U</td> <td>²⁰⁶Ph</td> <td>(%)</td> <td>²⁰⁶Ph</td> <td>(%)</td>	number	sample	(cps)	(ppm)	(ppm)	U	²⁰⁶ Ph	(%)	²⁰⁶ Ph	(%)	
U438 197284 0.26 0.46 0.32 2.043 15 0.8269 0.80 U447 1526928 0.96 3.9 0.18 0.8510 11 0.8307 0.41 U449 28729 0.52 0.066 0.33 1.942 22 0.8307 0.41 U450 10535 0.34 0.024 0.11 51.35 7.2 0.8019 1.8 U451 103061 0.97 0.23 0.37 15.87 11 0.8170 0.81 U453 84462 0.67 0.19 0.11 13.91 15 0.8220 0.71 U455 434619 0.82 0.82 0.16 0.7034 21 0.8373 0.80 U456 434819 0.82 0.35 0.13 8.870 15 0.8230 0.77 U459 122106 0.41 0.25 0.13 8.87 2.2 0.806 1.2 U461 96692 <t< td=""><td>U436</td><td>MTO 4-4</td><td>11732</td><td>0.075</td><td>0.027</td><td>0.17</td><td>11.66</td><td>12</td><td>0.8208</td><td>3.2</td></t<>	U436	MTO 4-4	11732	0.075	0.027	0.17	11.66	12	0.8208	3.2	
U447 1526928 0.96 3.9 0.18 0.8510 11 0.8307 0.41 U448 28255 0.034 0.066 0.33 1.942 22 0.8350 1.6 U449 25729 0.52 0.53 0.14 34.33 8.4 0.8024 1.6 U451 10306 0.67 0.19 0.11 1.311 15 0.8162 0.71 U453 84862 0.67 0.19 0.11 3.91 15 0.8162 0.71 U453 84862 0.67 0.16 3.529 6.1 0.8333 0.51 U455 13450 1.1 0.16 0.14 7.284 9.8 0.8248 0.82 U451 1.1 0.16 0.14 7.284 9.8 0.822 0.70 U463 153816 1.3 0.39 0.17 1.187 6.6 0.822 0.70 U465 198994 1.8 0.45 0.13 </td <td>U438</td> <td></td> <td>197284</td> <td>0.26</td> <td>0.46</td> <td>0.32</td> <td>2.043</td> <td>15</td> <td>0.8269</td> <td>0.80</td>	U438		197284	0.26	0.46	0.32	2.043	15	0.8269	0.80	
U448 28825 0.034 0.066 0.33 1.942 22 0.8350 1.6 U449 25729 0.52 0.058 0.14 34.39 8.4 0.8024 1.6 U451 103061 0.97 0.23 0.37 15.87 11 0.8170 0.81 U453 84862 0.67 0.19 0.11 1.3.91 15 0.8182 0.71 U455 813450 1.1 1.9 0.13 2.276 12 0.8266 0.50 U456 434419 0.82 0.82 0.16 0.703 1.6 0.8333 0.51 U457 334973 0.80 0.82 0.14 7.24 9.8 0.8230 0.77 U459 122106 0.41 0.25 0.14 7.23 0.8096 1.2 U461 96692 1.7 0.24 0.13 25.43 0.44 U463 932960 1.6 0.52 0.520 <td< td=""><td>U447</td><td></td><td>1526928</td><td>0.96</td><td>3.9</td><td>0.18</td><td>0.8510</td><td>11</td><td>0.8307</td><td>0.41</td></td<>	U447		1526928	0.96	3.9	0.18	0.8510	11	0.8307	0.41	
U449 25729 0.52 0.058 0.14 34.39 8.4 0.024 1.6 U450 10535 0.34 0.024 0.11 51.35 7.2 0.8019 1.8 U451 103061 0.97 0.23 0.37 15.87 11 0.8170 0.81 U455 813450 1.1 1.9 0.13 2.276 0.8333 0.51 U456 434819 0.82 0.95 0.16 3.529 6.1 0.8333 0.51 U456 434819 0.82 0.75 0.13 8.870 15 0.8230 0.77 U459 122106 0.41 0.25 0.14 7.244 9.8 0.8248 0.82 U461 96692 1.7 0.24 0.13 2.300 7.7 0.8195 0.87 U463 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.84 U464 53967 1.5 <td< td=""><td>U448</td><td></td><td>28825</td><td>0.034</td><td>0.066</td><td>0.33</td><td>1.942</td><td>22</td><td>0.8350</td><td>1.6</td></td<>	U448		28825	0.034	0.066	0.33	1.942	22	0.8350	1.6	
U450 10555 0.34 0.024 0.11 51.35 7.2 0.8019 1.8 U451 103061 0.97 0.23 0.37 15.87 11 0.8182 0.71 U455 813450 1.1 1.9 0.13 2.276 12 0.8266 0.50 U456 434819 0.82 0.95 0.16 0.7034 21 0.8373 0.80 U457 334973 0.16 0.82 0.13 8.870 15 0.8230 0.77 U459 122106 0.41 0.25 0.14 7.284 9.8 0.8224 0.84 U461 96624 1.1 0.16 0.13 2.30 7.7 0.805 0.70 U462 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.84 U463 153816 1.3 0.45 0.33 15.48 7.4 0.8195 0.70 U465 230504	U449		25729	0.52	0.058	0.14	34.39	8.4	0.8024	1.6	
U451 103061 0.97 0.23 0.37 15.87 11 0.8182 0.71 U455 813450 1.1 1.9 0.13 2.276 12 0.8182 0.71 U456 434819 0.82 0.95 0.16 3.529 6.1 0.8373 0.80 U457 334973 0.16 0.82 0.16 0.7044 21 0.8373 0.80 U458 137635 0.92 0.35 0.13 8.870 15 0.8373 0.80 0.77 U460 66245 1.1 0.16 0.14 7.243 9.8 0.8224 0.86 0.87 U461 96692 1.7 0.24 0.13 15.48 7.4 0.8195 0.70 U465 18998 1.8 0.45 0.13 15.48 7.4 0.8295 2.1 U466 230500 1.6 0.74 0.19 7.466 9.5 0.8230 0.77 U47	U450		10535	0.34	0.024	0.11	51.35	7.2	0.8019	1.8	
U453 84662 0.67 0.19 0.11 13.91 15 0.8182 0.71 U455 813460 1.1 1.9 0.13 2.276 12 0.8266 0.50 U456 434819 0.82 0.95 0.16 3.529 6.1 0.8333 0.51 U457 334973 0.16 0.82 0.16 0.7034 21 0.8373 0.80 U458 137635 0.92 0.35 0.13 8.870 15 0.8230 0.77 U459 122106 0.41 0.25 0.14 7.284 9.8 0.8248 0.85 U460 66245 1.1 0.16 0.14 2.36 7.2 0.8096 1.2 U461 96692 1.7 0.24 0.13 2.300 7.8 0.8195 0.87 U463 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.84 U464 533967 1.5 0.96 0.15 9.994 13 0.8290 0.70 U466 230504 0.82 0.58 0.22 5.050 7.3 0.8241 0.66 U467 16206 0.006 0.049 1.08 0.4013 25 0.8295 0.77 U469 142184 0.56 0.34 0.18 5.895 6.3 0.8230 0.77 U469 142184 0.56 0.34 0.18 5.895 6.3 0.8230 0.75 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8231 0.76 U471 165896 1.2 0.44 0.18 5.895 6.3 0.8225 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8231 0.76 U475 190576 2.0 0.48 0.11 18.97 6.2 0.8231 0.76 U475 190576 2.0 0.48 0.11 18.97 6.2 0.8231 0.76 U475 190576 2.0 0.48 0.11 18.97 6.2 0.8213 0.76 U475 190576 2.0 0.48 0.11 18.97 6.2 0.8248 0.51 U476 0.8226 0.55 0.15 0.22 1.319 7.0 0.8168 0.91 U476 0.8226 0.55 0.15 0.22 1.319 7.0 0.8168 0.91 U479 6.2448 0.55 0.15 0.22 1.319 7.0 0.8168 0.91 U480 0.8698 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 6.5836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U472 101404 0.73 0.26 0.36 9.16 1.2 0.8274 0.71 U578 U703 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 MT011-3 6.221 2.2 0.61 0.33 2.5.5 5.2 0.8133 0.93 U577 71210 1.6 0.16 0.33 2.5.5 5.0 7775 1.2 U580 73038 1.3 0.16 0.33 2.5.5 5.0 0.7775 1.2 U580 73038 1.3 0.16 0.33 2.5.5 5.0 0.7775 1.2 U580 73038 1.3 0.16 0.33 2.5.5 5.0 0.7775 1.2 U580 73038 1.3 0.16 0.53 1.10 0.8181 0.61 U585 53627 0.56 0.12 0.34 2.015 1.5 0.8144 1.3 U586 93652 0	U451		103061	0.97	0.23	0.37	15.87	11	0.8170	0.81	
u455 813450 1.1 1.9 0.13 2.276 12 0.8266 0.50 U456 434819 0.82 0.95 0.16 0.7034 21 0.8333 0.51 U457 334973 0.16 0.82 0.16 0.7034 21 0.8333 0.51 U459 122106 0.41 0.25 0.14 7.284 9.88 0.8248 0.85 U460 66245 1.1 0.16 0.14 24.36 7.2 0.8066 1.2 U461 96692 1.7 0.24 0.13 15.48 7.4 0.8195 0.70 U464 533967 1.5 0.66 0.15 9.984 13 0.8224 0.84 U464 533967 1.6 0.87 0.10 7.46 9.5 0.8230 0.77 U465 198998 1.8 0.45 0.18 5.895 6.3 0.8235 0.75 U470 105200	U453		84862	0.67	0.19	0.11	13.91	15	0.8182	0.71	
u456 434819 0.82 0.95 0.16 3.529 6.1 0.8373 0.60 u457 334973 0.16 0.82 0.15 0.8373 0.80 u458 137635 0.92 0.35 0.13 8.870 15 0.8230 0.77 u459 122106 0.41 0.25 0.14 7.244 9.8 0.8242 0.8066 1.2 u461 96692 1.7 0.24 0.13 23.00 7.8 0.8195 0.87 u463 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.70 u465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 u465 120504 0.82 0.56 0.22 0.70 0.466 230504 0.82 0.824 0.16 0.403 1.5 0.8230 0.57 u463 392950 1.6 0.87 0.10 7.466 9.5	U455		813450	1.1	1.9	0.13	2.276	12	0.8266	0.50	
U457 334973 0.16 0.82 0.16 0.7034 21 0.8320 0.77 U459 122106 0.41 0.25 0.13 8.870 15 0.8230 0.77 U459 122106 0.41 0.25 0.14 7.284 9.8 0.8248 0.85 U460 66245 1.1 0.16 0.14 2.300 7.8 0.8195 0.87 U461 533967 1.5 0.96 0.15 9.994 13 0.8224 0.70 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U465 1980998 1.8 0.42 0.56 0.22 5.050 7.3 0.8241 0.66 U467 16206 0.006 0.049 1.08 0.4013 25 0.8230 0.57 U469 142184 0.56 0.34 0.18 5.895 6.3 0.8285 0.75 U470	U456		434819	0.82	0.95	0.16	3.529	6.1	0.8333	0.51	
U458 137635 0.92 0.35 0.14 7.284 9.8 0.8248 0.85 U460 66245 1.1 0.16 0.14 24.36 7.2 0.8096 1.2 U461 96692 1.7 0.24 0.13 23.00 7.8 0.8195 0.87 U463 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.84 U464 533967 1.5 0.96 0.15 9.984 13 0.8292 0.70 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U465 198999 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U465 198999 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U466 230504 0.82 0.58 0.22 5.507 7.3 0.8241 0.66 U467 16206 0.006 0.049 1.08 0.4013 25 0.8295 2.1 U468 392950 1.6 0.87 0.10 7.466 9.5 0.8230 0.57 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8231 0.76 U471 165896 1.2 0.41 0.14 10.53 13 0.8235 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 18.97 6.2 0.8173 0.66 U474 309796 1.7 0.74 0.12 8.422 9.4 0.8193 0.76 U476 489694 1.8 1.2 0.12 5.065 8.3 0.8288 0.51 U477 627160 1.5 1.6 0.16 1.3 10.633 19 0.8298 0.53 U479 126248 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.76 U475 489694 1.8 1.2 0.12 5.065 8.3 0.8288 0.51 U477 627160 1.5 1.6 0.16 3.303 19 0.8290 0.53 U479 62648 0.55 0.17 0.38 4.834 9.9 0.8360 0.62 U472 1.10142 0.73 0.26 0.321 1.25.16 0.0 0.8187 0.70 U450 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 66836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 12.9191 11 0.8071 0.20 U580 173038 1.3 0.018 0.33 24.25 5.2 0.8173 0.68 U580 173038 1.3 0.018 0.33 24.25 5.2 0.8173 0.57 U481 166332 0.92 0.31 0.61 9.991 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 2.82627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 10.15 2.304 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8144 1.3 U586 93652 0.37 0.56 0.12 0.34 20.15 15 0.8144 1.3 U586 93652 0.35 0.27 0.23 2.51 1.377 6.3 0.8318 0.85 U590 2.98582 1.7 0.67 0.20 11.2 0.18 0.8216 0.68 U591 2.83829 0.57 0.27 0.23 2.51 3.877 6.3 0.8152 0.64 U589 8755	U457		334973	0.16	0.82	0.16	0.7034	21	0.8373	0.80	
0459 122106 0.41 0.25 0.14 7.244 9.8 0.85 0.8996 1.2 U461 96692 1.7 0.24 0.13 23.00 7.8 0.8195 0.87 U463 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.70 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U466 230504 0.82 0.58 0.22 5.050 7.3 0.8241 0.66 U467 16206 0.006 0.491 1.8 0.460 9.5 0.8230 0.57 U468 392950 1.6 0.87 0.10 7.466 9.5 0.8235 0.75 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8231 0.76 U471 165596 1.2 0.41 0.14 10.53 1.3 0.8235 0.82 U472 <	U458		137635	0.92	0.35	0.13	8.870	15	0.8230	0.77	
U460 b66245 1.1 0.16 0.14 24.36 7.2 0.8195 0.87 U461 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.84 U463 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.84 U464 533967 1.5 0.96 0.15 9.984 13 0.8222 0.70 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.73 0.8241 0.66 U467 16206 0.006 0.049 1.08 0.4013 25 0.8230 0.57 U469 142184 0.56 0.34 0.18 5.895 6.3 0.8225 0.75 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8211 0.76 U471 165896 1.2 0.41 0.14 10.53 1.3 0.828 0.51	0459		122106	0.41	0.25	0.14	7.284	9.8	0.8248	0.85	
U461 96692 1.7 0.24 0.13 23.00 7.8 0.8195 0.84 U463 1533967 1.5 0.96 0.15 9.984 13 0.8292 0.70 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U466 230504 0.82 0.58 0.22 5.050 7.3 0.8241 0.66 U467 16206 0.006 0.049 1.08 0.4013 25 0.8235 2.1 U468 392950 1.6 0.87 0.10 7.466 9.5 0.8230 0.57 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8235 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 18.07 6.2 0.8172 0.76	0460		66245	1.1	0.16	0.14	24.36	7.2	0.8096	1.2	
U463 153816 1.3 0.39 0.17 11.87 6.6 0.8224 0.84 U464 533997 1.5 0.96 0.15 9.984 13 0.8224 0.84 U465 198998 1.8 0.45 0.13 15.48 7.4 0.8195 0.70 U466 230504 0.82 0.58 0.22 5.050 7.3 0.8295 2.1 U468 392950 1.6 0.87 0.10 7.466 9.5 0.8230 0.57 U469 142184 0.56 0.34 0.18 5.895 6.3 0.8285 0.75 U470 105200 1.2 0.41 0.14 0.53 1.3 0.8285 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 14.00 15 0.8173 0.66 U474 309796	0461		96692	1.7	0.24	0.13	23.00	7.8	0.8195	0.87	
U464 533967 1.5 0.96 0.15 9.984 1.3 0.6292 0.70 U466 230504 0.82 0.58 0.22 5.050 7.3 0.8241 0.66 U467 16206 0.006 0.049 1.08 0.4013 25 0.8295 2.1 U468 392950 1.6 0.87 0.10 7.466 9.5 0.8230 0.57 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8231 0.76 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 18.97 6.2 0.8172 0.76 U474 30976 1.7 0.74 0.12 8.422 9.4 0.8172 0.76 U475 190576 2.0 0.48 0.11 14.00 15 0.8288 0.51 U477 627160 <t< td=""><td>0463</td><td></td><td>153816</td><td>1.3</td><td>0.39</td><td>0.17</td><td>11.87</td><td>6.6</td><td>0.8224</td><td>0.84</td></t<>	0463		153816	1.3	0.39	0.17	11.87	6.6	0.8224	0.84	
U465 186956 1.8 0.13 13.45 1.4 0.1815 0.163 U465 16206 0.006 0.049 1.08 0.4013 25 0.8231 0.66 U467 16206 0.006 0.049 1.08 0.4013 25 0.8235 2.1 U468 392950 1.6 0.87 0.10 7.466 9.5 0.8230 0.57 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8235 0.82 U471 166896 1.2 0.41 0.14 10.53 13 0.8236 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139976 1.7 0.74 0.12 8.422 9.4 0.8172 0.76 U475 190576 2.0 0.48 0.11 14.00 15 0.8246 1.2 U475 190576 0.55 <	0464		100000	1.5	0.96	0.15	9.904	74	0.6292	0.70	
0486 23004 0.82 <th0.82< th=""> 0.82 0.82 <th< td=""><td>0405</td><td></td><td>190990</td><td>1.0</td><td>0.45</td><td>0.13</td><td>10.40 5.050</td><td>7.4</td><td>0.0195</td><td>0.70</td></th<></th0.82<>	0405		190990	1.0	0.45	0.13	10.40 5.050	7.4	0.0195	0.70	
U468 392950 1.6 0.049 7.466 9.5 0.0223 2.1 U469 142184 0.56 0.34 0.18 5.895 6.3 0.8285 0.75 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8231 0.76 U471 165896 1.2 0.41 0.14 10.53 13 0.8235 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 18.97 6.2 0.8173 0.66 U474 309796 1.7 0.74 0.12 8.422 9.4 0.8172 0.76 U475 190576 2.0 0.48 0.11 14.00 15 0.8172 0.76 U476 489694 1.8 1.2 0.12 3.03 19 0.8286 0.51 U479 62648 0.55 0.1	0400		16206	0.02	0.00	1.08	0.4013	25	0.0241	2.1	
U460 132184 0.56 0.34 0.18 5.88 6.3 0.8285 0.75 U470 105200 1.2 0.25 0.11 17.73 6.2 0.8231 0.76 U471 165896 1.2 0.41 0.14 10.53 13 0.8235 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 18.97 6.2 0.8173 0.66 U475 190576 2.0 0.48 0.11 14.00 15 0.8172 0.76 U476 489694 1.8 1.2 0.12 5.056 8.3 0.8288 0.51 U476 489694 1.8 1.2 0.12 1.3 9 0.8290 0.53 U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186886 0.29 </td <td>11/68</td> <td></td> <td>302050</td> <td>1.6</td> <td>0.049</td> <td>0.10</td> <td>7 466</td> <td>95</td> <td>0.0230</td> <td>0.57</td>	11/68		302050	1.6	0.049	0.10	7 466	95	0.0230	0.57	
0435 112101 0.10 0.100 <th0< td=""><td>11469</td><td></td><td>142184</td><td>0.56</td><td>0.34</td><td>0.10</td><td>5 895</td><td>63</td><td>0.0200</td><td>0.75</td></th0<>	11469		142184	0.56	0.34	0.10	5 895	63	0.0200	0.75	
U471 165896 1.2 0.11 0.11 0.11 0.11 0.13 0.8235 0.82 U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 18.97 6.2 0.8173 0.66 U474 309796 1.7 0.74 0.12 8.422 9.4 0.8193 0.76 U475 190576 2.0 0.48 0.11 14.00 15 0.8172 0.76 U476 489694 1.8 1.2 0.12 5.065 8.3 0.8280 0.53 U477 627160 1.5 1.6 0.16 3.303 19 0.8286 0.51 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 2118	11470		105200	1.2	0.25	0.10	17 73	6.2	0.8231	0.76	
U472 101404 0.73 0.26 0.36 9.160 12 0.8246 1.2 U473 139917 2.0 0.35 0.11 18.97 6.2 0.8173 0.66 U474 309796 1.7 0.74 0.12 8.422 9.4 0.8173 0.66 U475 190576 2.0 0.48 0.11 14.00 15 0.8172 0.76 U476 489694 1.8 1.2 0.12 5.065 8.3 0.8288 0.51 U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U475 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U576 MTO 11-3 62812 1.2 0.16 0.33 25.5 5.2 0.8123	U471		165896	1.2	0.20	0.14	10.53	13	0.8235	0.82	
U473 139917 2.0 0.35 0.11 18.97 6.2 0.8173 0.66 U474 309796 1.7 0.74 0.12 8.422 9.4 0.8193 0.76 U475 190576 2.0 0.48 0.11 14.00 15 0.8172 0.76 U476 489694 1.8 1.2 0.12 5.065 8.3 0.8280 0.51 U477 627160 1.5 1.6 0.16 3.303 19 0.8290 0.53 U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 <	U472		101404	0.73	0.26	0.36	9,160	12	0.8246	1.2	
U474 309796 1.7 0.74 0.12 8.422 9.4 0.8193 0.76 U475 190576 2.0 0.48 0.11 14.00 15 0.8172 0.76 U476 489694 1.8 1.2 0.12 5.065 8.3 0.8288 0.51 U477 627160 1.5 1.6 0.16 3.303 19 0.8290 0.53 U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 <td>U473</td> <td></td> <td>139917</td> <td>2.0</td> <td>0.35</td> <td>0.11</td> <td>18.97</td> <td>6.2</td> <td>0.8173</td> <td>0.66</td>	U473		139917	2.0	0.35	0.11	18.97	6.2	0.8173	0.66	
U475 190576 2.0 0.48 0.11 14.00 15 0.8172 0.76 U476 489694 1.8 1.2 0.12 5.065 8.3 0.8288 0.51 U477 627160 1.5 1.6 0.16 3.303 19 0.8290 0.53 U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U580 73038 1.3 <td>U474</td> <td></td> <td>309796</td> <td>1.7</td> <td>0.74</td> <td>0.12</td> <td>8.422</td> <td>9.4</td> <td>0.8193</td> <td>0.76</td>	U474		309796	1.7	0.74	0.12	8.422	9.4	0.8193	0.76	
U476 489694 1.8 1.2 0.12 5.065 8.3 0.8288 0.51 U477 627160 1.5 1.6 0.16 3.303 19 0.8290 0.53 U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U579 66175 1.1 0.16 0.33 24.35 4.9 0.8092 1.0 U581 116	U475		190576	2.0	0.48	0.11	14.00	15	0.8172	0.76	
U477 627160 1.5 1.6 0.16 3.303 19 0.8290 0.53 U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11.3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 66175 1.1 0.16 0.33 24.35 4.9 0.8092 1.0 U581 1163	U476		489694	1.8	1.2	0.12	5.065	8.3	0.8288	0.51	
U479 62648 0.55 0.15 0.22 13.19 7.0 0.8186 0.91 U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 2.9.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 66175 1.1 0.16 0.33 25.25 5.2 0.8123 0.92 U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 11	U477		627160	1.5	1.6	0.16	3.303	19	0.8290	0.53	
U480 186988 0.59 0.40 0.28 6.266 11 0.8272 0.57 U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 2	U479		62648	0.55	0.15	0.22	13.19	7.0	0.8186	0.91	
U481 65836 0.25 0.17 0.38 4.834 9.9 0.8266 0.82 U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 66175 1.1 0.16 0.33 25.25 5.2 0.8123 0.92 U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 28	U480		186988	0.59	0.40	0.28	6.266	11	0.8272	0.57	
U482 211822 1.9 0.53 0.21 12.51 6.0 0.8187 0.70 U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 66175 1.1 0.16 0.33 25.25 5.2 0.8123 0.92 U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 21	U481		65836	0.25	0.17	0.38	4.834	9.9	0.8266	0.82	
U576 MTO 11-3 62812 1.2 0.16 0.31 26.79 7.2 0.8138 0.93 U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 66175 1.1 0.16 0.33 25.25 5.2 0.8123 0.92 U580 73038 1.3 0.18 0.32 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 536	U482		211822	1.9	0.53	0.21	12.51	6.0	0.8187	0.70	
U577 71210 1.6 0.18 0.21 29.91 11 0.8051 1.1 U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 66175 1.1 0.16 0.33 25.25 5.2 0.8123 0.92 U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8144 1.3 U586 93652 0.35 <td>U576</td> <td>MTO 11-3</td> <td>62812</td> <td>1.2</td> <td>0.16</td> <td>0.31</td> <td>26.79</td> <td>7.2</td> <td>0.8138</td> <td>0.93</td>	U576	MTO 11-3	62812	1.2	0.16	0.31	26.79	7.2	0.8138	0.93	
U578 27053 1.3 0.063 0.15 82.26 5.5 0.7775 1.2 U579 66175 1.1 0.16 0.33 25.25 5.2 0.8123 0.92 U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8144 1.3 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8215 0.74 U587 192319 1.5	U577		71210	1.6	0.18	0.21	29.91	11	0.8051	1.1	
U579 66175 1.1 0.16 0.33 25.25 5.2 0.8123 0.92 U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8144 1.3 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8215 0.74 U587 192319 1.5 0.47 0.23 21.17 16 0.8154 0.70 U589 87555 0.27	U578		27053	1.3	0.063	0.15	82.26	5.5	0.7775	1.2	
U580 73038 1.3 0.18 0.33 24.35 4.9 0.8092 1.0 U581 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8144 1.3 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8251 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8215 0.74 U589 87555 0.27 0.23 2.11.7 16 0.8154 0.70 U590 298582 1.7 0.6	U579		66175	1.1	0.16	0.33	25.25	5.2	0.8123	0.92	
US81 116332 0.92 0.31 0.61 9.981 5.6 0.8209 0.71 US82 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8181 0.61 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8251 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8215 0.74 U588 350075 2.7 0.69 0.23 21.17 16 0.8154 0.70 U589 87555 0.	U580		73038	1.3	0.18	0.33	24.35	4.9	0.8092	1.0	
U582 183789 1.5 0.48 0.22 10.55 7.8 0.8152 0.68 U583 282627 2.0 0.73 0.30 9.601 6.3 0.8217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8181 0.61 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8251 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8215 0.74 U588 350075 2.7 0.69 0.23 21.17 16 0.8154 0.70 U589 87555 0.27 0.23 2.61 3.877 6.3 0.8313 0.85 U590 298582 1.7 0.67 0.20 11.20 18 0.8216 0.68 U591 263989 3.	U581		116332	0.92	0.31	0.61	9.981	5.6	0.8209	0.71	
U583 22627 2.0 0.73 0.30 9.601 6.3 0.6217 0.53 U584 216408 3.0 0.51 0.15 23.04 10 0.8181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8181 0.61 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8251 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8215 0.74 U588 350075 2.7 0.69 0.23 21.17 16 0.8154 0.70 U589 87555 0.27 0.23 2.51 3.877 6.3 0.8313 0.85 U590 298582 1.7 0.67 0.20 11.20 18 0.8216 0.68 U591 263989 3.5 0.50 0.13 42.55 13 0.7960 0.59 U592 137796 1.2<	0582		183789	1.5	0.48	0.22	10.55	7.8	0.8152	0.68	
U584 216406 3.0 0.51 0.15 23.04 10 0.16181 0.61 U585 53627 0.56 0.12 0.34 20.15 15 0.8144 1.3 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8251 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8215 0.74 U588 350075 2.7 0.69 0.23 21.17 16 0.8154 0.70 U589 87555 0.27 0.23 2.51 3.877 6.3 0.8313 0.85 U590 298582 1.7 0.67 0.20 11.20 18 0.8216 0.68 U591 263989 3.5 0.50 0.13 42.55 13 0.7960 0.59 U592 137796 1.2 0.36 0.53 11.01 6.5 0.8182 0.63 "a Within run background-corrected mean ²⁰⁷ Pb s	0583		282627	2.0	0.73	0.30	9.601	0.3	0.8217	0.53	
U585 S3627 0.36 0.12 0.34 20.15 15 0.144 1.3 U586 93652 0.35 0.25 1.57 4.614 7.8 0.8251 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8251 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8251 0.74 U588 350075 2.7 0.69 0.23 21.17 16 0.8154 0.70 U589 87555 0.27 0.23 2.51 3.877 6.3 0.8313 0.85 U590 298582 1.7 0.67 0.20 11.20 18 0.8216 0.68 U591 263989 3.5 0.50 0.13 42.55 13 0.7960 0.59 U592 137796 1.2 0.36 0.53 11.01 6.5 0.8182 0.63 I U and	0584		210400	3.0	0.51	0.15	23.04	10	0.0101	0.01	
0586 93602 0.33 0.23 1.37 4.614 7.8 0.6231 0.71 U587 192319 1.5 0.47 0.24 11.90 14 0.8215 0.74 U588 350075 2.7 0.69 0.23 21.17 16 0.8154 0.70 U589 87555 0.27 0.23 2.51 3.877 6.3 0.8313 0.85 U590 298582 1.7 0.67 0.20 11.20 18 0.8216 0.68 U591 263989 3.5 0.50 0.13 42.55 13 0.7960 0.59 U592 137796 1.2 0.36 0.53 11.01 6.5 0.8182 0.63 a Within run background-corrected mean ²⁰⁷ Pb signal in cps (counts per second). Image: the primary reference material. Image: the primary reference material. Image: the primary reference material. Image: the primary reference primary primary reference primary primary primary preference primaterial. Image: primary primary prefere	0585		02652	0.50	0.12	1.54	20.15	15	0.0144	0.71	
0.537 132.519 1.3 0.47 0.24 11.50 14 0.0215 0.74 U588 350075 2.7 0.69 0.23 21.17 16 0.8154 0.70 U589 87555 0.27 0.23 2.51 3.877 6.3 0.8313 0.85 U590 298582 1.7 0.67 0.20 11.20 18 0.8216 0.68 U591 263989 3.5 0.50 0.13 42.55 13 0.7960 0.59 U592 137796 1.2 0.36 0.53 11.01 6.5 0.8182 0.63 a Within run background-corrected mean ²⁰⁷ Pb signal in cps (counts per second). Image: the primary reference material. Image:	11597		102310	1.55	0.25	0.24	11 00	1.0	0.0201	0.71	
U589 87555 0.27 0.23 2.51 3.877 6.3 0.8313 0.85 U590 298582 1.7 0.67 0.20 11.20 18 0.8216 0.68 U591 263989 3.5 0.50 0.13 42.55 13 0.7960 0.59 U592 137796 1.2 0.36 0.53 11.01 6.5 0.8182 0.63 a Within run background-corrected mean ²⁰⁷ Pb signal in cps (counts per second). Image: Counter the primary reference is a second of the primary reference is a secon	11588		350075	27	0.69	0.24	21 17	16	0.8154	0.74	
use use <thue< th=""> <thue< th=""> <thue< th=""></thue<></thue<></thue<>	U589		87555	0.27	0.23	2.51	3.877	6.3	0.8313	0.85	
use use <thue< th=""> <thue< th=""> <thue< th=""></thue<></thue<></thue<>	U590		298582	1.7	0.67	0.20	11.20	18	0.8216	0.68	
U592 137796 1.2 0.36 0.53 11.01 6.5 0.8182 0.63 ^a Within run background-corrected mean ²⁰⁷ Pb signal in cps (counts per second). ^b U and Pb concentrations and Th/U ratio were calculated relative to the primary reference material. ^c Corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶ Pb/ ²³⁸ U) and -	U591		263989	3.5	0.50	0.13	42.55	13	0.7960	0.59	
 ^a Within run background-corrected mean ²⁰⁷Pb signal in cps (counts per second). ^b U and Pb concentrations and Th/U ratio were calculated relative to the primary reference material. ^c Corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶Pb/²³⁸U) and ⁻ 	U592		137796	1.2	0.36	0.53	11.01	6.5	0.8182	0.63	
 ^a Within run background-corrected mean ²⁰⁷Pb signal in cps (counts per second). ^b U and Pb concentrations and Th/U ratio were calculated relative to the primary reference material. ^c Corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶Pb/²³⁸U) and - 											
 ^b U and Pb concentrations and Th/U ratio were calculated relative to the primary reference material. ^c Corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶Pb/²³⁸U) and ⁻ 	^a Withir	n run backg	round-cor	rected me	an ²⁰⁷ Pb s	ignal in c	ps (counts	per seco	nd).		
material. ^c Corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶ Pb/ ²³⁸ U) and -	^b U an	d Pb conc	entrations	and Th/l	J ratio wei	re calcul	ated relativ	e to the	primary ref	erence	
	materia	ll. Acted for	backgrour	nd within		I fractio	nation (in	0260 0	f 206Db/238	l) and	
	- Corre	JULEU IUI	Dackgrouf	ia, wittilf	FIULI FD/C		nauon (in	case 0	·) anu	

295

Table 5: U-Pb data of the LA-MC-ICP-MS measurements.

Analysis	name /	²⁰⁷ Pb ^a	Up	Pb ^b	Th ^b	²³⁸ U ^c	±2s	²⁰⁷ Pb ^c	±2s	
number	sample	(cps)	(ppm)	(ppm)	U	²⁰⁶ Pb	(%)	²⁰⁶ Pb	(%)	sequence
009 U	BOX 108	47348	1.5	0.12	0.072	20.17	5.3	0.8166	0.71	1
010 U		44263	1.1	0.056	0.23	29.83	6.6	0.8160	0.89	1
011_U		8120	0.30	0.019	0.13	24.49	6.7	0.8187	1.4	1
012_U		159615	0.70	0.39	0.22	2.864	15	0.8321	0.56	1
013 U		52758	1.7	0.11	0.15	24.44	7.1	0.8109	0.68	1
015 U		45815	1.2	0.10	0.14	18.66	5.8	0.8205	0.69	1
016 U		210465	0.67	0.50	0.14	2.107	5.8	0.8319	0.50	1
017 U		153200	1.1	0.20	0.17	9.094	11	0.8307	0.56	1
020 U		8660	1.3	0.021	0.088	91.85	5.6	0.7616	1.6	1
020 Ui		54426	1.1	0.11	0.099	15.05	5.7	0.8207	0.68	1
021 U		40138	1.3	0.081	0.11	26.06	13	0.8202	0.75	1
022 U		13276	2.0	0.034	0.056	90.51	4.3	0.7733	1.2	1
024 U		15689	0.50	0.036	0.066	21.67	4.8	0.8219	1.4	1
025 U		24934	0.77	0.061	0.18	20.22	8.6	0.8253	0.90	1
026 U		217333	1.4	0.49	0.14	4.348	7.4	0.8290	0.47	1
027 U		45280	4.3	0.12	0.36	54.80	4.0	0.8014	0.75	1
028 U		106376	4.2	0.26	0.36	25.85	6.8	0.8208	0.63	1
029 U		46138	1.1	0.11	0.52	15.40	9.0	0.8247	0.85	1
030 U		143271	13	0.31	0.098	6 515	12	0.8286	0.50	1
031 U		104559	1.0	0.26	0.14	6.336	3.5	0.8281	0.56	1
032 11		66441	0.94	0.15	0.33	9.637	5.2	0.8307	0.78	1
032_0		40961	1.8	0.099	0.00	28.05	4.8	0.8213	0.76	1
034 11		14702	1.0	0.000	0.12	47 15	5.1	0.0210	1.6	1
035 11		28122	1.1	0.067	0.066	24 78	10	0.8136	0.87	1
036 11		42203	0.59	0.007	0.000	9 232	92	0.8277	0.07	1
037 11		164255	1 1	0.10	0.001	4 766	15	0.8291	0.53	1
037_0		260017	1.1	0.07	0.098	5 783	11	0.0201	0.00	1
030_0		2705/	1.0	0.45	0.000	30.81	5.5	0.0002	0.83	1
039_0		50620	0.96	0.034	0.24	11 90	3.5	0.8280	0.05	1
040_0		201/2	12	0.13	0.05	30.23	11	0.0200	1 1	1
041_0		172098	0.87	0.047	0.004	2 984	12	0.8315	0.51	1
042_0		26053	0.61	0.40	0.00	2/ 13	86	0.8164	0.01	1
043_0		25005	1 1	0.040	0.040	27.36	5.0	0.0104	1 1	1
044_0		20038	0.04	0.000	0.15	20.81	12	0.0100	1.1	1
045_0		416921	0.94	0.071	0.13	20.01	27	0.0210	0.46	1
040_0		27527	1.6	0.75	0.071	2.150	0.3	0.0309	1 1	1
047_0		2/133/	1.0	0.000	0.34	28.80	3.3	0.7950	0.76	1
048_0		0027	1.0	0.003	0.23	20.09	3.3 2.2	0.0144	1.2	1
049_0		17620	5.7	0.023	0.10	158.0	6.0	0.7023	1.2	1
050_0		60318	1.0	0.054	0.031	20.20	5.0	0.7100	0.82	1
060 11		14510	1.5	0.13	0.20	57 70	5.5	0.0131	1 1	1
061 11		00602	0.00	0.030	0.10	6 175	11	0.1919	0.64	1
062 11		106/03	1 /	0.23	0.030	9.364	6.6	0.8275	0.04	1
062_0		330/13	1.4	0.20	0.070	43.08	8.4	0.0270	1 1	1
067 11		0178	0.25	0.049	0.19	20.53	4.6	0.7970	1.1	1
068 11		60040	3.4	0.013	0.15	20.33	7.1	0.0202	0.71	1
069_0		12020	33	0.14	0.000	17 99	6.5	0.0100	0.71	1
		71312	2.1	0.11	0.000	18 77	8.0	0.0001	0.70	1
070_0		16427	1.6	0.10	0.003	60.56	6.5	0.0134	1 /	1
009 11	BCR 9644	1031	0.061	0.040	0.000	7/ /9	7.0	0.7300	3.0	2
	DOIX 3044	87	0.006	0.001	0.012	68.34	11	0.8105	13	2
010_0		87	0.000	0.000	-0.00112	156.2	10	0.7726	14	2
		110	0.014	0.000	0.00112	2/2.5	0.5	0.7793	12	2
014_0		343	0.020	0.000	0.0003	109.7	0.3	0.7703	84	2
013_0		337	0.010	0.000	-0.0030	130.7	9.3 0.7	0.0203	0.4	2
012 11		337 125	0.030	0.000	-0.00574	130.1 220.6	9.1 Q ()	0.0209	1.1	2
010 11		120 275	0.025	0.000	-0.00410	220.0	9.U 0.E	0.7020	10	2
013_0		210	0.019	0.000	-0.02079	201.2	9.0 0 0	0.7002	10	2
021_0		109	0.025	0.000	0.0081	217.8	0.9	0.7230	11	2
022_0		470	0.029	0.000	0.0089	240.5	9.8	0.7104	0.7 10	2
023_0		108	0.019	0.000	0.0084	200.7	9.9	0.1513	12	2
024_0		141	0.030	0.000	0.0024	246.3	8.1	0.8004	11	2
025_0		720	0.045	0.001	-0.00528	119.5	6.9	0.8306	5.4	2
026_U		347	0.038	0.001	0.046	117.3	8.2	0.7971	6.9	2

027_U		1796	0.57	0.002	0.0067	488.8	19	0.6571	4.2	2
028_U		2103	0.020	0.003	0.032	9.585	9.5	0.8217	2.9	2
029_U		2505	0.62	0.002	0.0018	577.5	21	0.6308	5.7	2
031_U		285	0.030	0.000	0.010	109.3	6.5	0.7944	7.0	2
032_U		1114	0.19	0.001	0.0056	247.8	6.6	0.7212	4.3	2
033_U		148	0.059	0.000	0.0095	360.8	8.7	0.6898	11	2
034_U		180	0.017	0.000	0.014	106.2	9.4	0.7711	9.8	2
035_U		73633	0.30	0.025	0.0011	19.18	36	0.8220	0.93	2
036_U		200	0.006	0.000	0.043	30.98	11	0.8088	8.4	2
037_U		925	0.10	0.002	0.00099	73.86	21	0.8161	5.5	2
039_U		406	0.068	0.001	0.0050	164.1	8.8	0.7734	6.3	2
350_U		9048	0.48	0.016	0.019	46.44	7.7	0.8196	1.5	2
359_U		50690	0.64	0.079	0.057	12.70	11	0.8247	0.66	2
360_U		5648	0.62	0.009	0.0088	109.5	5.9	0.7752	1.9	2
361_U		1218	0.11	0.002	0.0097	82.26	8.4	0.7972	4.1	2
365_U		49349	0.54	0.061	0.039	14.14	9.0	0.8213	0.72	2
366_U		4943	0.040	0.007	0.018	8.691	21	0.8239	2.5	2
368_0		1226	0.021	0.002	0.058	17.45	8.1	0.8227	3.5	2
369_0		65958	0.25	0.12	0.11	3.320	13	0.8291	0.62	2
374_0		305	0.032	0.001	-0.00810	92.10	7.1	0.7948	7.8	2
375_0		2308	0.087	0.003	0.014	52.37	12	0.8094	4.9	2
376_0		27934	0.78	0.032	0.020	38.35	11	0.8195	0.89	2
377_0		17604	1.0	0.035	0.0051	44.70	10	0.8127	1.0	2
378_0		58189	0.63	0.082	0.012	12.09	15	0.8195	0.62	2
382_0		9122	0.93	0.015	0.0072	96.07	0.C	0.7675	1.5	2
384_0		6040	0.019	0.001	0.099	21.20	10	0.8240	4.5	2
200 11		6781	0.52	0.008	0.010	70.65	13	0.8097	1.0	2
200 11		6780	1.02	0.010	0.0070	19.00	11	0.0000	2.2	2
300 11		17237	0.90	0.010	0.0023	50.27	62	0.7333	2.5	2
391 11		1518	0.30	0.020	0.017	74.06	10	0.8176	33	2
392 11		6719	0.40	0.002	0.0075	82 20	47	0.7937	17	2
160 U	MTO 4-4	42459	0.40	0.033	0.0070	3 455	16	0.8322	0.76	2
161 U	MI O F F	36404	0.100	0.000	0.086	6 599	10	0.8274	0.80	2
162 U		29300	0.31	0.025	0.12	19.64	15	0.8157	0.81	2
164 U		107586	0.65	0.064	0.11	16.10	12	0.8229	0.62	2
166 U		62776	1.1	0.055	0.13	32.05	4.3	0.8194	1.1	2
167 U		111666	0.47	0.12	0.16	6.312	15	0.8264	0.55	2
168 U		86330	0.82	0.076	0.12	17.08	7.0	0.8159	0.59	2
169_U		361703	0.88	0.24	0.10	5.739	15	0.8268	0.43	2
170_U		635386	0.50	0.56	0.14	1.426	11	0.8318	0.49	2
171_U		124867	0.27	0.083	0.11	5.252	16	0.8296	0.55	2
174_U		39215	0.67	0.032	0.075	33.18	9.4	0.8066	0.78	2
177_U		51601	0.29	0.049	0.11	9.368	8.3	0.8236	0.72	2
178_U		109476	1.3	0.079	0.093	26.16	11	0.8123	0.60	2
179_U		239957	0.80	0.19	0.12	6.474	9.5	0.8249	0.47	2
180_U		296212	0.93	0.23	0.13	6.498	15	0.8244	0.45	2
181_U		361123	0.98	0.35	0.082	4.497	13	0.8251	0.43	2
182_U		178465	0.91	0.12	0.14	12.41	5.1	0.8252	0.51	2
183_U		39048	0.49	0.037	0.067	21.37	8.1	0.8182	0.96	2
184_U		1048150	0.65	0.94	0.046	1.089	3.9	0.8279	0.39	2
185_U		102247	0.84	0.090	0.10	14.76	8.1	0.8206	0.61	2
186_U		121692	1.0	0.11	0.10	14.40	5.0	0.8202	0.50	2
187_0		198711	0.62	0.14	2.61	6.826	7.4	0.8273	0.47	2
188_0		291589	1.2	0.27	0.11	6.743	6.3	0.8238	0.43	2
189_U		231299	1.1	0.18	0.14	9.687	8.5	0.8269	0.45	2
190_0		413220	0.81	0.35	0.12	3.665	5.6	0.8296	0.42	2
191_0		11917	0.074	0.008	0.14	13.84	9.4	0.8215	1.4	2
192_0		120152	0.96	0.12	0.092	12.84	11	0.8217	0.62	2
104		13154	0.75	0.062	0.29	19.21	10	0.010/	0.60	2
194_U		549529 51691	0.20	0.49	0.13	1.982	12	0.0351	0.45	2
100 11		01001	0.30	0.040	0.32	10.41	9.0 0.0	0.0230	0.72	2
798 ⁻ 0		213244 177619	0.00	0.23	0.20	4.000	9.0 17	0.0330	0.45	2
209_0		411010	1.04	0.30	0.12	5.040	1/	0.0211	0.41	2
210_0		412020	1.0	0.30	0.10	5.4/1	J.2	0.0207	0.43	2

211_U		293172	1.0	0.18	0.13	8.843	11	0.8263	0.45	2
212_U		555903	1.1	0.38	0.088	4.670	16	0.8287	0.41	2
213_U		76097	0.92	0.047	0.084	31.17	8.0	0.8095	0.68	2
214_U		346163	1.1	0.31	0.23	5.896	6.1	0.8265	0.43	2
215_U		120901	0.90	0.10	0.11	14.03	14	0.8228	0.53	2
217_U		262806	1.3	0.35	0.13	5.921	8.3	0.8314	0.44	2
219 U		127957	1.0	0.10	0.13	16.17	13	0.8172	0.58	2
220 U		7919	0.11	0.004	0.16	42.58	11	0.8090	1.8	2
221 U		148260	1.6	0.13	0.24	19.25	5.8	0.8175	0.48	2
222 U		128181	1.3	0.094	0.089	20.96	13	0.8179	0.55	2
223 U		307635	1.5	0.26	0.14	9.247	4.3	0.8249	0.44	2
225 U		254729	1.6	0.23	0.11	11.19	8.6	0.8251	0.48	2
226 U		355548	1.3	0.24	0.11	8 578	91	0 8241	0.43	2
220_0		156455	11	0.14	0.098	12 89	7.5	0.8222	0.50	2
228 11		681461	0.67	0.64	0.095	1 651	10	0.8295	0.00	2
220_0		95834	1.0	0.04	0.000	19 44	77	0.8180	0.40	2
225_0		157/97	1.0	0.004	0.10	12.96	12	0.0100	0.57	2
231_0		3030	0.066	0.14	0.001	33.06	71	0.0220	2.0	2
232_0		110467	2.000	0.003	0.10	20 51	7.1	0.0091	0.51	2
235_0		10407	2.0	0.10	0.000	30.31	0.1	0.0130	0.51	2
234_0		100504	1.0	0.11	0.12	23.19	0.0	0.0100	0.52	2
235_0		1000334	1.0	0.15	0.10	19.40	0.0	0.0100	0.52	2
236_0		220800	1.0	0.19	0.18	14.73	70	0.6216	0.47	2
237_0		246643	1.3	0.21	0.084	9.590	7.9	0.8252	0.46	2
238_0		379877	0.62	0.29	0.089	3.429	32	0.8280	0.44	2
239_0		217983	0.78	0.19	0.11	6.434	14	0.8287	0.49	2
240_0		412692	0.73	0.38	0.066	3.048	12	0.8311	0.45	2
241_U		48316	0.51	0.040	0.15	20.14	7.7	0.8204	0.64	2
244_U	MTO 11-3	31010	0.020	0.020	2.18	1.605	14	0.8367	1.0	2
245_U		24767	0.047	0.030	0.53	2.522	22	0.8298	0.98	2
247_U		63055	0.28	0.079	0.38	5.659	7.2	0.8300	0.68	2
248_U		99922	0.26	0.13	0.53	3.038	5.8	0.8329	0.55	2
249_U		16054	0.064	0.024	0.59	4.306	7.1	0.8338	1.1	2
250_U		95971	0.20	0.094	0.47	3.360	5.4	0.8268	0.57	2
259_U		20407	0.83	0.026	0.11	50.50	12	0.7972	1.1	2
260_U		1786	0.011	0.003	0.74	6.092	8.0	0.8376	3.1	2
265_U		124037	0.14	0.10	0.95	2.202	8.5	0.8317	0.55	2
266_U		19405	0.088	0.021	0.47	6.703	14	0.8330	1.0	2
268_U		145975	1.7	0.21	0.21	12.39	7.1	0.8255	0.58	2
269_U		136367	0.12	0.19	1.64	1.023	5.3	0.8312	0.51	2
271_U		12070	0.034	0.018	1.15	2.977	14	0.8323	1.2	2
272 U		55571	0.22	0.075	0.45	4.556	5.9	0.8267	0.65	2
274_U		9126	0.059	0.012	0.55	7.695	11	0.8312	2.2	2
275 U		11007	0.054	0.017	1.23	5.116	6.3	0.8262	1.2	2
276 U		58251	0.092	0.080	0.54	1.841	16	0.8373	0.67	2
277 U		112321	0.29	0.13	1.17	3.413	8.0	0.8274	0.55	2
278 U		18070	0.048	0.028	0.75	2.698	7.3	0.8292	0.93	2
279 U		105781	0.37	0.15	0.69	3.774	6.9	0.8304	0.54	2
281 U		153346	4.0	0.22	0.081	28.52	7.9	0.8107	0.51	2
282 11		141144	3.6	0.20	0.069	27.90	8.6	0.8121	0.52	2
283 11		70729	0.71	0.11	0.15	9 890	4.2	0.8229	0.59	2
284 11		57878	0.28	0.065	0.32	6.812	14	0.8344	0.67	2
285 11		179536	0.73	0.19	0.34	6.075	47	0.8349	0.48	2
286 11		201969	13	0.32	0.31	6 386	49	0.8261	0.44	2
280_0		37/1/2	2.5	0.52	0.01	7 103	7.0	0.0201	0.42	2
207_0		120171	2.0	0.00	0.000	29.71	5.0	0.0247	0.52	2
200_0		120171	J.Z	0.10	0.007	20.71	5.0	0.0112	0.50	2
209_0		107967	4.1	0.10	0.002	JJ.20	J.J 77	0.0090	0.55	2
290_0		106011	4.9	0.10	0.000	40.17	1.1	0.0000	0.37	2
791 ⁰		100011	1.9	0.17	0.43	17.90	10	0.0193	0.05	2
292_0		01587	4.5	0.11	0.075	63.75	15	0.7965	1.1	2
293_U		91650	3.8	0.14	0.043	42.71	5.7	0.8084	0.58	2
294_U		80760	3.8	0.12	0.075	47.86	5.8	0.8000	0.66	2
295_U	_	67617	4.3	0.11	0.043	62.75	5.6	0.7921	0.67	2
436_U	Pu 05	1336	0.008	0.001	0.018	17.15	12	0.7968	3.4	2
440 U		3541	0.013	0.002	0.047	9.396	12	0.7993	3.3	2
-										

442 11		010	0.010	0.000	0.0040	20.24	40	0 7000	10	2
442_0		819	0.010	0.000	0.0016	30.21	12	0.7929	4.3	2
444_U		3503	0.002	0.001	0.058	5.613	15	0.7931	2.7	2
445 U		1398	0.006	0.001	0.043	12.30	8.4	0.7884	3.4	2
463 U		2058	0.019	0.001	0.043	19 92	10	0 7828	34	2
100_0		2000	0.010	0.004	0.050	22.20	75	0.7000	2.0	-
464_0		2093	0.019	0.001	0.059	23.30	7.5	0.7605	2.9	2
465_U		1188	0.007	0.001	0.12	16.62	13	0.7885	4.6	2
466 U		7720	0.049	0.005	0.043	14.59	4.8	0.7909	1.6	2
467 U		2652	0.032	0.002	0.032	26.36	15	0 7822	3.6	2
107_0		E1007	0.002	0.020	0.045	15.04	11	0.7010	0.65	2
408_0		51097	0.31	0.030	0.045	15.94	4.4	0.7910	0.05	2
469_U		39483	0.30	0.024	0.13	19.22	4.7	0.7889	0.77	2
470 U		18990	0.23	0.011	0.031	33.65	6.1	0.7832	0.96	2
472 U		77384	0.56	0.046	0.022	18.78	5.0	0.7925	0.58	2
472 11		40750	1.2	0.020	0.014	62.46	75	0.7600	0.79	2
4/5_0		42755	1.2	0.029	0.014	02.40	7.5	0.7622	0.76	2
474_U		38267	0.51	0.026	0.017	29.85	12	0.7871	0.98	2
475_U		6462	0.25	0.004	0.0099	92.20	9.6	0.7538	2.3	2
476 U		55482	0.93	0.039	0.092	36.70	9.8	0.7884	0.89	2
477 11		24674	0.11	0.016	0.047	11 10	47	0 7968	10	2
477_0		24074	0.11	0.010	0.047	71.13	4.7	0.7500	1.0	2
478_0		2847	0.075	0.002	0.0068	74.37	12	0.7544	2.4	2
479_U		70165	0.52	0.045	0.079	17.80	6.7	0.7906	0.60	2
480 U		184870	0.88	0.12	0.069	11.87	3.8	0.7968	0.48	2
481 11		11662	0.62	0.008	0 0093	115.9	76	0 7352	12	2
402 11		4000	0.014	0.000	0.0000	15.04	1.0	0.7002	2.2	2
483_0		1829	0.014	0.001	0.030	15.84		0.7971	3.2	2
486_U		652	0.003	0.001	0.032	8.749	22	0.7941	5.5	2
487_U		97239	1.4	0.060	0.019	36.73	4.6	0.7742	0.57	2
488 U		12860	0.70	0.009	0.0061	122.2	8.9	0.7343	1.4	2
180 11		22723	0.84	0.014	0.011	80.0/	10	0 7/68	0.03	2
405_0		22723	0.04	0.014	0.011	03.34	7.5	0.7400	0.00	~
490_0		39877	0.51	0.026	0.013	30.42	6.1	0.7844	0.81	2
491_U		30830	1.0	0.014	0.016	114.4	16	0.7368	0.91	2
492 U		19082	1.0	0.014	0.013	106.9	10	0.7335	1.1	2
009 11	MTO 11-3	90036	29	0.29	0 14	31 54	10	0 8054	0.65	3
005_0	Mile II e	00000	2.0	0.20	0.14	01.04	10	0.0004	0.00	2
010_0		60711	4.8	0.19	0.058	80.09	4.6	0.7784	0.73	3
011_U		321269	3.1	0.97	0.36	10.25	6.6	0.8207	0.40	3
012 U		18890	1.8	0.061	0.081	92.39	6.5	0.7715	1.1	3
013 11		104308	20	0.32	0.12	20.01	87	0 8134	0 49	3
014 11		40407	2.0	0.40	0.070	70.00	4.4	0.0101	0.00	2
014_0		49427	2.4	0.13	0.076	12.22		0.7788	0.99	3
015_U		140824	4.3	0.43	0.14	32.07	4.3	0.8054	0.50	3
017_U		107005	3.6	0.34	0.083	34.10	5.5	0.8103	0.54	3
018 U		63650	0.60	0.19	0.30	10.74	7.3	0.8207	0.60	3
024 11		112002	0.55	0.25	0.02	5 077	0.5	0 9270	0.49	2
024_0		112992	0.55	0.55	0.92	5.077	9.5	0.0279	0.40	5
025_0		148314	0.57	0.45	0.77	4.294	9.0	0.8277	0.44	3
028_U		148368	3.1	0.40	0.11	29.45	11	0.8088	0.60	3
031 U		54347	2.1	0.17	0.075	42.55	8.5	0.7968	0.76	3
033 11		158602	33	0.50	0.23	21 72	49	0 8142	0.45	з
034 11		474 47	0.04	0.00	0.20	7 704	-1.0 E 0	0.0142	0.40	2
034_0		4/14/	0.31	0.14	0.38	7.791	5.9	0.8239	0.00	3
035_U		161917	3.2	0.50	0.34	20.44	5.5	0.8167	0.42	3
037_U		245790	3.2	0.68	0.23	17.08	6.7	0.8149	0.47	3
038 U		152560	4.6	0.48	0.14	30.05	6.2	0.8048	0.54	3
040 11		45567	22	0.14	0.11	50 70	55	0 7961	0.68	2
040_0		40.440	0.05	0.14	0.11	00.70	0.0	0.7001	0.00	2
041_0		43416	0.35	0.14	0.43	8.464	8.0	0.8208	0.94	3
042_U		41614	0.27	0.13	0.39	7.039	7.3	0.8276	0.77	3
043 U		51784	0.32	0.16	0.43	6.705	5.5	0.8184	0.67	3
044 U		185745	4.0	0.53	0.19	26.15	8.7	0.8085	0.46	3
045 11		107600	1.6	0 50	0.12	0 502	10	0.0004	0.45	2
045_0		19/022	1.0	0.50	0.12	9.000		0.0224	0.45	5
046_0		163159	3.2	0.52	0.15	19.59	7.1	0.8129	0.52	3
047_U		137303	3.2	0.45	0.17	21.78	6.0	0.8140	0.54	3
048 U		74586	3.5	0.24	0.098	47.14	5.7	0.7992	0.63	3
049 11		142/06	41	0.45	0.14	31 20	45	0 8067	0/3	2
0-0-0		1 400 40	4.9	0.45	0.14	20.25	т .Ј	0.0007	0.40	2
050_0		148349	4.8	0.45	0.14	30.35	6.6	0.8066	0.51	3
059_U		102822	3.0	0.32	0.18	30.04	6.2	0.8036	0.51	3
061 U		125428	3.2	0.40	0.16	25.59	6.9	0.8108	0.47	3
062 11		37071	11	0.13	0.13	23 38	9.8	0 8098	0.76	3
002_0		40000	0.70	0.10	0.10	45.00	0.0	0.00000	0.70	2
063_0		48032	0.78	0.16	0.12	15.90	6.3	0.8180	0.71	3
064_U		69242	0.51	0.21	0.58	8.442	13	0.8203	0.63	3
065 U		165434	4.1	0.51	0.060	26.34	9.2	0.8096	0.53	3
066 U		134214	5,5	0.42	0,085	41.66	9.2	0.7982	0.55	3

067_U		35032	3.5	0.12	0.051	91.67	4.7	0.7642	0.82	3
068_U		197102	2.8	0.65	0.17	13.21	5.2	0.8204	0.40	3
069_U		152700	2.9	0.46	0.12	21.30	17	0.8147	0.57	3
071_U		108748	0.34	0.35	1.35	3.081	9.5	0.8266	0.52	3
072_U		170691	0.85	0.55	0.59	4.946	11	0.8292	0.52	3
073_U		9935	1.7	0.032	0.068	155.2	7.0	0.7228	1.5	3
074_U		92588	5.5	0.30	0.059	58.10	9.9	0.7929	0.77	3
009_U	Pu 05	2167	0.030	0.002	0.0045	64.40	17	0.7620	3.1	4
011_U		642	0.003	0.001	0.018	12.15	16	0.8304	6.2	4
013_U		2053	0.002	0.002	0.062	4.612	6.6	0.8177	2.8	4
014_U		550	0.011	0.000	0.0052	75.72	18	0.7705	7.0	4
015_U		1351	0.027	0.001	0.00067	67.07	8.5	0.7705	3.5	4
016_U		7081	0.10	0.006	0.015	56.46	7.6	0.7632	1.6	4
017_U		2027	0.064	0.002	0.0088	132.8	9.8	0.7411	2.8	4
018_U		1355	0.051	0.001	0.0042	127.1	15	0.7475	3.5	4
019_U		9372	0.10	0.007	0.018	63.09	8.6	0.7824	2.2	4
020_U		2028	0.015	0.002	0.013	27.00	6.9	0.7825	3.0	4
021_U		3008	0.011	0.002	0.0037	18.46	5.1	0.8120	2.8	4
022_U		1140	0.005	0.001	0.0098	13.19	19	0.7949	4.4	4
023_U		1051	0.033	0.001	0.0029	94.71	16	0.7526	4.8	4
025_0		4316	0.059	0.004	0.0071	51.96	14	0.7794	1.9	4
026_0		7481	0.050	0.007	0.022	23.39	9.4	0.7891	1.6	4
027_0		6387	0.028	0.006	0.010	12.93	18	0.7951	1.7	4
028_0		12431	0.023	0.011	0.0018	6.389	14	0.8304	1.3	4
029_0		1118	0.023	0.001	0.0070	73.49	9.6	0.7553	4.8	4
030_0		1099	0.004	0.001	0.00034	6.039	35	0.8159	3.8	4
031_0		2450	0.003	0.002	0.029	4.920	11	0.8120	2.5	4
032_0		0010	0.057	0.007	0.042	29.39	9.7	0.7989	1.0	4
033_0		2450	0.006	0.002	0.086	0.300	7.5	0.8029	3.9	4
034_0		1943	0.010	0.001	0.029	22.09	12	0.0047	3.3	4
037_0		1471	0.010	0.001	0.014	23.40	12	0.8003	4.0	4
		5569	0.037	0.005	0.0077	25.05	6.2	0.7790	1.8	4
040_0		2789	0.039	0.003	0.049	10.48	20	0.0039	23	4
041_0		2703	0.000	0.002	0.013	35.64	20	0.00000	2.0	4
042_0		845	0.022	0.001	0.0071	16.92	20	0.8020	45	4
043_0		1053	0.002	0.001	0.046	8 587	15	0.8135	37	4
045 U		2058	0.004	0.002	0.023	6.070	81	0.8143	2.8	4
046 U		1004	0.003	0.001	0.018	14 56	9.9	0 7973	3.8	4
047 U		1329	0.016	0.001	0.00077	33.81	31	0.8012	3.7	4
048 U		1422	0.021	0.001	0.0060	45.24	15	0.7810	3.1	4
049 U		276573	1.2	0.16	0.049	37.36	12	0.7884	0.56	4
060 U		1411	0.006	0.001	0.0053	15.00	12	0.8117	3.0	4
061 U		7356	0.090	0.005	0.084	81.01	27	0.7538	2.1	4
062_U		1435	0.043	0.001	0.0064	117.0	14	0.7277	3.2	4
064_U		633	0.056	0.001	0.0010	219.2	23	0.6783	5.8	4
067_U		108576	0.66	0.094	0.019	21.24	4.2	0.8007	0.55	4
068_U		22860	0.23	0.019	0.017	37.25	4.5	0.7906	0.91	4
073_U		2091	0.14	0.002	0.0021	199.1	9.7	0.6805	3.3	4
075_U		748	0.007	0.001	0.0033	29.09	18	0.8043	4.8	4
078_U		1316	0.061	0.001	0.0023	150.7	9.0	0.7338	3.7	4
079_U		2405	0.044	0.002	0.0056	60.40	15	0.7854	2.5	4
080_U		2285	0.032	0.002	0.0047	46.32	13	0.7933	2.8	4
081_U		2198	0.040	0.002	0.011	78.19	6.2	0.7541	2.5	4
088_U	MTO 4-4	154270	1.5	0.23	0.24	22.94	8.6	0.8128	0.51	4
089_U		66593	1.0	0.11	0.075	31.35	8.3	0.8050	0.64	4
092_U		25818	0.94	0.043	0.14	72.14	9.5	0.7867	1.3	4
093_U		188855	1.5	0.29	0.15	18.28	12	0.8136	0.45	4
094_U		70717	1.5	0.12	0.099	42.66	3.3	0.7971	0.68	4
095_U		392652	1.3	0.68	0.14	5.799	17	0.8244	0.40	4
096_U		39333	0.54	0.065	0.14	27.02	9.7	0.8107	0.72	4
098_U		343014	0.64	0.58	0.33	3.486	9.0	0.8302	0.43	4
099_U		15397	0.083	0.027	0.36	9.619	12	0.8195	1.2	4
100_U		35522	0.27	0.060	0.24	14.65	4.5	0.8160	0.78	4
109_U		202639	1.6	0.34	0.081	14.63	19	0.8141	0.57	4

110_U		42283	0.70	0.069	0.083	33.87	5.6	0.8050	0.75	4
111_U		112583	1.5	0.19	0.099	25.52	9.2	0.8088	0.50	4
112_U		120520	0.70	0.21	0.043	10.44	16	0.8226	0.54	4
113_U		4129	0.17	0.007	0.067	75.44	9.7	0.7836	2.3	4
114_U		64831	0.23	0.12	0.051	6.233	6.3	0.8270	0.63	4
115_U		386587	2.3	0.63	0.061	11.80	8.6	0.8204	0.36	4
116_U		101833	0.059	0.18	0.59	1.008	20	0.8328	0.51	4
117_U		36664	0.023	0.066	0.93	1.063	21	0.8262	0.80	4
118_U		263914	1.5	0.45	0.11	10.72	10	0.8204	0.42	4
119_U		198490	1.0	0.33	0.16	10.32	10	0.8199	0.46	4
120_U		321214	1.3	0.54	0.099	7.662	5.1	0.8241	0.38	4
121_U		77903	0.53	0.13	0.046	12.56	6.3	0.8208	0.64	4
122_U		477392	1.1	0.81	0.13	4.040	11	0.8258	0.43	4
123_U		62459	0.84	0.11	0.089	25.60	12	0.8143	0.66	4
124 U		83446	0.45	0.14	0.13	9.875	14	0.8151	0.56	4
125_U		328913	0.86	0.53	0.11	5.216	11	0.8267	0.38	4
126 U		51257	1.2	0.080	0.082	53.19	6.5	0.7948	0.88	4
127 U		165366	1.2	0.28	0.094	13.05	6.3	0.8199	0.44	4
128 U		128085	0.78	0.24	0.14	9.825	15	0.8209	0.48	4
129 U		40122	0.48	0.068	0.076	22.54	8.6	0.8123	0.72	4
130 U		243432	1.6	0.40	0.11	12.91	8.9	0.8182	0.41	4
131 U		410018	1.0	0.63	0.098	5.566	9.6	0.8252	0.38	4
132 U		453513	1.3	0.75	0.11	5.295	13	0.8225	0.39	4
133 U		140762	1.0	0.23	0.10	14.54	10	0.8205	0.45	4
134 U		171451	1.8	0.25	0.11	27.07	5.9	0.8110	0.49	4
135 U		299485	1.3	0.50	0.088	8.646	7.3	0.8253	0.40	4
136 U		273271	0.95	0.46	0.13	6 742	7.5	0.8255	0.38	4
137 U		261422	1.00	0.44	0.17	7.251	8.8	0.8219	0.40	4
139 U		336303	12	0.56	0.20	6 730	14	0.8277	0.38	4
140 U		91664	0.34	0.00	0.11	7 230	15	0.8242	0.51	4
140_0		2833	0.04	0.005	0.16	98 39	71	0.0242	3.4	4
141_0		178759	0.10	0.000	0.10	9 142	10	0.8233	0.4	4
144 11		175078	1 1	0.00	0.000	11 67	18	0.8186	0.50	4
145 11		190119	12	0.00	0.10	13.46	87	0.8178	0.00	4
146 U		85820	1.2	0.00	0.22	30.20	35	0.8081	0.40	4
140_0		320220	0.75	0.15	0.22	/ 281	9.5	0.8254	0.02	4
1/12 11		11/260	1 1	0.00	0.14	18 16	8.5	0.0204	0.53	4
1/0 11		2/82/1	1.1	0.20	0.004	8 312	83	0.8215	0.00	4
149_0		191702	0.02	0.42	0.10	11 66	10.0	0.0213	0.41	4
150_0		122725	0.92	0.20	0.100	12.50	ГО.О Б Л	0.0192	0.47	4
160 11		126549	0.00	0.21	0.17	12.59	9.4	0.0211	0.40	4
161 11		120040	1.0	0.22	0.10	20.06	4.6	0.0214	0.50	4
161_0		70200	1.9	0.17	0.000	39.00	4.0	0.0017	0.56	4
162_0		10200	1.2	0.13	0.092	0.696	0.0	0.0049	0.71	4
105_0		190400	1.0	0.34	0.092	9.000	9.0	0.0209	0.44	4
166_0		303135	1.3	0.49	0.11	0.744	1.1	0.8241	0.40	4
109_0		104500	0.07	0.11	0.079	47.04	9.7	0.0100	0.02	4
170_0		124000	1.1	0.21	0.093	17.94	1.9	0.0174	0.45	4
171_0		50000	1.3	0.27	0.009	10.70	13	0.0100	0.40	4
172_0		00400	0.92	0.094	0.090	33.03	7.0	0.0049	0.03	4
173_0		70747	1.5	0.14	0.10	40.49	7.9	0.7962	0.53	4
175_0		115200	1.1	0.11	0.100	34.90	5.1 5.0	0.0040	0.71	4
176_0		05544	1.2	0.15	0.099	39.42	5.0	0.0010	0.75	4
1//_0		35514	0.82	0.058	0.079	47.42	5.3	0.7983	0.80	4
178_0		60006	1.5	0.090	0.095	59.06	8.5	0.7877	0.77	4
1/9_0		263568	1.7	0.45	0.091	11.81	9.8	0.8172	0.51	4
180_0		237512	1.2	0.38	0.089	10.36	26	0.8202	0.53	4
181_0		/958/	1.0	0.14	0.12	24.39	5./	0.8099	0.56	4
182_0		181676	1.5	0.31	0.16	15.23	8.6	0.8179	0.49	4
183_U		148496	0.62	0.39	0.15	3.828	6.4	0.8256	0.42	4
184_U		338583	1.7	0.59	0.067	9.117	8.8	0.8256	0.39	4
185_U		79508	1.1	0.13	0.065	26.54	4.1	0.8143	0.56	4
186_U		85236	0.73	0.15	0.089	15.83	9.9	0.8170	0.54	4
18/_U		307851	1.0	0.53	0.26	5.904	13	0.8191	0.43	4
188_U	DOV	116771	1.1	0.21	0.087	16.25	11	0.8141	0.53	4
280_U	BOX 108	3723	0.027	0.015	0.018	4.210	34	0.8405	2.5	4

283 U	215245	2.5	0.52	0.12	19.76	7.4	0.8240	0.47	4
284 U	95417	1.1	0.28	0.14	13.04	4.9	0.8259	0.51	4
287 U	9849	1.3	0.030	0.033	133.6	4.0	0.7471	1.5	4
288 U	11288	1.5	0.035	0.042	124.2	4.9	0.7493	1.6	4
289 U	34194	0.096	0.099	0.22	3.185	13	0.8344	0.81	4
290 U	242588	2.0	0.72	0.18	8.867	7.6	0.8307	0.42	4
291 U	142226	1.3	0.40	0.11	10.56	12	0.8321	0.45	4
292 U	205563	1.8	0.52	0.11	13.32	8.8	0.8231	0.44	4
293 11	174825	1.0	0.41	0.054	11.00	18	0.8305	0.45	4
294 11	155002	1.8	0.44	0.15	14 07	3.5	0.8248	0.46	4
296 U	135623	14	0.34	0.25	16 69	9.9	0.8252	0.47	4
297 11	431598	1.3	11	0.34	4 623	97	0.8293	0.37	4
298 11	73380	1.0	0.22	0.07	26.06	9.7	0.8186	0.58	4
299 11	285598	27	0.22	0.027	12 45	7.6	0.8291	0.30	4
300 11	177111	1 /	0.51	0.012	8 972	13	0.8245	0.46	1
309 11	20078	0.082	0.061	0.14	4 368	34	0.8415	14	4
311 11	162504	1.2	0.001	0.20	7 502	13	0.8274	0.50	1
312_0	300617	2.1	0.40	0.14	7 673	85	0.8305	0.00	4
312_0	4524	0.035	0.00	0.061	8 581	1/	0.8286	22	1
313_0	1/070/	0.000	0.013	0.001	8 132	5.8	0.0200	0.46	4
314_0	151082	2.8	0.42	0.10	20.25	3.0	0.8208	0.40	4
216 11	402000	5.0	1.2	0.10	12.02	77	0.0200	0.40	4
217 11	403030	1.6	0.20	0.000	25.40	1.1	0.0299	0.41	4
219 11	60001	1.0	0.20	0.13	23.40	4.4	0.0132	0.02	4
318_0	42021	1.5	0.21	0.10	21.JZ	0.7	0.0190	0.02	4
220 11	43921	2.7	0.13	0.002	10.04	9.7	0.7921	0.79	4
320_0	90009	0.99	0.30	0.20	10.40	3.5	0.0274	0.49	4
321_0	45927	0.04	0.20	0.21	11.04	0.6	0.0324	0.54	4
322_0	40007	0.39	0.13	0.079	14.90	0.0	0.0240	0.70	4
325_0	201562	1.1	0.25	0.14	7 571	3.0 16	0.0234	0.01	4
324_0	291303	2.1	0.00	0.11	1.371	0.2	0.0275	0.44	4
325_0	100055	2.5	0.17	0.000	40.74	9.2	0.0017	0.00	4
326_0	270011	1.0	0.51	0.035	10.17	5.0	0.8268	0.48	4
327_0	105050	0.73	0.40	0.10	2.132	9.0	0.0300	0.40	4
328_0	120000	2.0	0.40	0.035	19.49	20	0.8257	0.64	4
330_0	045054	2.0	0.45	0.074	15.75	9.5	0.0244	0.40	4
331_0	240604	1.0	0.00	0.29	9.850	7.9	0.8210	0.56	4
332_0	47905	0.41	0.12	0.15	12.59	9.9	0.8276	0.76	4
333_0	04500	4.0	1.7	0.12	0.040	9.0	0.8295	0.38	4
334_0	84562	1.2	0.25	0.096	16.17	3.2	0.8216	0.55	4
335_0	100050	1.8	0.19	0.12	31.10	8.8	0.8126	0.64	4
336_0	192058	3.3	0.54	0.056	21.03	5.8	0.8238	0.44	4
337_0	02700	1.7	0.25	0.14	21.94	5.4	0.8239	0.50	4
338_0	99827	2.1	0.30	0.19	22.02	6.9	0.8194	0.51	4
339_0	49540	1.6	0.15	0.091	33.08	11	0.8110	0.65	4
340_0	209779	1.5	0.61	0.14	8.328	28	0.8299	0.49	4
341_0	93794	0.90	0.26	0.086	11.96	6.9	0.8256	0.51	4
342_0	44297	1.6	0.12	0.051	50.34	5.0	0.7976	0.81	4
343_0	16242	0.025	0.049	0.36	1.664	30	0.8431	1.3	4
344_0	74235	0.35	0.21	0.30	5.544	4.8	0.8306	0.54	4
345_0	195664	1.3	0.54	0.11	8.889	6.4	0.8261	0.44	4
346_0	48143	0.61	0.12	0.15	22.81	3.8	0.8228	0.73	4
348_0	71996	0.59	0.20	0.094	10.79	4.2	0.8295	0.57	4
349_0	102507	1.1	0.30	0.26	12.24	15	0.8253	0.50	4
350_0	198463	2.5	0.51	0.035	18.76	9.3	0.8261	0.44	4
359_0	8939	0.043	0.024	0.45	6.144	27	0.8324	1.6	4
360_0	57033	0.98	0.17	0.24	18.08	9.6	0.8228	0.61	4
361_0	203520	4.3	0.62	0.069	22.01	12	0.8204	0.40	4
362_0	35763	2.9	0.11	0.038	80.60	6.4	0.7848	0.83	4
364_U	79345	1.4	0.25	0.083	17.82	4.7	0.8228	0.53	4
365_0	39697	2.2	0.12	0.096	59.48	4.7	0.7974	0.71	4
366_U	144201	0.82	0.43	0.12	6.093	16	0.8321	0.46	4
367_U	53472	0.69	0.16	0.088	13.48	8.2	0.8254	0.67	4
369_0	50693	2.5	0.16	0.10	49.25	7.4	0.7975	0.74	4
370_0	52833	2.4	0.17	0.076	44.69	6.3	0.8078	0.59	4
371_U	51179	0.82	0.16	0.11	16.64	14	0.8172	0.80	4

Table 5: continue...

372_U		14847	0.28	0.040	0.050	25.52	12	0.8150	1.3	4
373_U		67995	0.55	0.20	0.083	8.701	13	0.8239	0.64	4
374_U		169346	1.3	0.47	0.11	9.985	12	0.8279	0.45	4
375_U		73258	1.4	0.23	0.11	19.10	10	0.8199	0.56	4
376_U		30039	0.42	0.097	0.077	13.11	14	0.8220	0.77	4
377 U		243980	1.9	0.75	0.15	8.114	4.6	0.8310	0.40	4
378 U		28838	1.6	0.089	0.085	58.11	5.3	0.7966	0.95	4
379 U		106946	2.6	0.33	0.039	24.87	5.1	0.8131	0.56	4
380 U		64981	2.6	0.19	0.10	44.16	5.7	0.8001	0.62	4
381 U		82318	2.1	0.21	0.091	39.33	13	0.8072	0.72	4
382 11		78516	1.3	0.24	0.098	17.00	12	0.8192	0.59	4
383 11	BCR 9644	22865	0.86	0.064	0.024	47.56	51	0.8056	0.97	4
384 11	Bontoon	6644	0.84	0.019	0.0040	146.9	11	0 7724	2.0	4
386 11		77128	0.07	0.010	0.0040	4 265	41	0.8256	0.55	4
388 11		3/16	0.27	0.22	0.20	11/ 6	1.1	0.0200	22	4
200 11		19/62	0.22	0.059	0.075	17.52	12	0.2061	1.0	4
202 11		10405	0.33	0.000	0.073	190.6	12	0.0001	2.0	4
392_0		4303	0.14	0.008	0.0033	100.0	50	0.7574	3.0	4
393_0		14366	1.3	0.044	0.016	91.44	5.8	0.7816	1.2	4
394_0		18496	0.92	0.054	0.019	57.05	5.9	0.7943	1.1	4
395_0		4428	0.20	0.012	0.041	58.79	5.9	0.8002	2.0	4
396_0		12559	0.81	0.032	0.016	104.3	5.4	0.7788	1.5	4
397_0		1342	0.59	0.004	0.0025	376.0	9.0	0.6875	4.7	4
399_U		146754	0.20	0.32	0.11	3.469	6.1	0.8260	0.55	4
409_U		11621	0.41	0.035	0.018	39.82	11	0.8117	1.5	4
411_U		5627	0.48	0.018	0.021	84.35	7.9	0.7917	1.8	4
412_U		23357	1.1	0.066	0.038	60.11	6.7	0.8029	0.97	4
413_U		14314	0.22	0.041	0.061	19.04	15	0.8151	1.2	4
415_U		6924	0.056	0.014	0.15	29.96	8.1	0.8014	4.3	4
416_U		6828	0.17	0.020	0.026	28.80	8.2	0.8266	1.7	4
423_U		4952	0.090	0.013	0.027	28.72	6.2	0.8009	2.2	4
427_U		962	0.047	0.003	0.10	42.18	11	0.8056	4.0	4
433_U		733	0.30	0.002	0.0013	444.8	12	0.6898	6.1	4
435_U		3290	0.025	0.006	0.0021	35.94	17	0.8262	4.6	4
438_U		1004	0.076	0.003	0.035	74.37	9.7	0.7965	4.1	4
440_U		891	0.007	0.003	0.025	8.704	10	0.8189	4.4	4
441_U		3306	0.47	0.010	0.0019	139.0	5.6	0.7832	2.1	4
442 U		1782	0.18	0.005	0.0024	103.9	4.6	0.7908	3.0	4
443 U		1876	0.10	0.005	0.0018	68.27	5.5	0.8084	2.9	4
445 U		892	0.009	0.003	0.74	7.259	21	0.8357	4.3	4
446 U		5383	0.20	0.017	0.0096	39.50	8.5	0.8110	1.6	4
447 U		5316	0.36	0.016	0.0056	72.00	3.8	0.8105	1.7	4
448 U		4019	0.44	0.013	0.0056	107.8	7.5	0.7851	3.3	4
449 U		839	0.16	0.002	0.0045	235.9	9.6	0.7546	4.5	4
450 U		27342	1.5	0.084	0.040	56 17	84	0.8088	1.0	4
459 11		5280	0.17	0.017	0.016	31 91	19	0.8161	17	4
162 LL		37636	0.062	0.11	0.23	1 778	9.2	0.8254	0.80	
462_0		200330	2.3	0.11	0.25	11 77	6.9	0.0204	0.00	4
467 11		676	0.005	0.01	0.000	0.050	0.5 Q ()	0.8126	5.2	4
169 11		1909	0.000	0.002	0.012	22.930	11	0.0120	3.2	4
406_U		2022	0.000	0.000	0.013	33.01 20.07	15	0.0120	3.0	4
469_0		3923	0.13	0.013	0.17	29.07	15	0.8056	2.1	4
^a Withir ^b U and materia	 ^a Within run background-corrected mean ²⁰⁷Pb signal in cps (counts per second). ^b U and Pb concentrations and Th/U ratio were calculated relative to the primary reference material. 									

^c Corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶Pb/²³⁸U) and subsequently normalised to the primary reference material (ID-TIMS value/measured value).

Author contributions

315 AB and AG were involved in the LA-ICPMS analysis and pit-depth measurements. IV accomplished the fieldwork and sample collection. All the authors collaborated in preparing the manuscript.

Competing interest

The authors declare that they have no conflict of interest.

Acknowledgements

320 FIERCE is financially supported by the Wilhelm and Else Heraeus Foundation and by the Deutsche Forschungsgemeinschaft (DFG, INST, 161/921-1 FUGG and INST 161/923-1 FUGG), which is gratefully acknowledged. Cores from Borehole EMS-4 (Cattolica Eraclea) in the Caltanissetta Basin (Sicily) are stored in the core repository of the University of Milano, Department of Earth Science "Ardito Desio" after core restoration performed within COST Action CA15103 MEDSALT.

References

- 325 Andreetto, F., Matsubara, K., Beets, C.J., Fortuin, A.R., Flecker, R., and Krijgsman, W.: High Mediterranean water level during the Lago-Mare phase of the Messinian Salinity Crisis: insights from the Sr isotope records of Spanish marginal basins (SE Spain), Paleogeogr. Paleoclimatol. Paleoecol., 562, 110139, <u>https://doi.org/10.1016/j.palaeo.2020.110139</u>, 2021.
- Astilleros, J.M., Godelitsas, A., Rodríguez-Blanco, J.D., Fernández-Díaz, L., Prieto, M., Lagoyannis, A., and Harissopulos,
 S.: Interaction of gypsum with Pb bearing aqueous solutions, Appl. Geochem., 25, 1008-1016.
 https://doi.org/10.1016/j.apgeochem.2010.04.007, 2010.
 - Babel, M., and Schreiber, B.C.: Geochemistry of evaporites and evolution of seawater, in: Treatise on Geochemistry (2nd edition), edited by: Turekian, K., and Holland, H., Elsevier, Oxford, UK, 483-560, <u>https://doi.org/10.1016/B978-0-08-095975-7.00718-X</u>, 2014.

Brannon, J. C., Cole, S. C., Podosek, F. A., Ragan, V. M., Coveney, R. M., Wallace, M. W., and Bradley, A. J.: Th-Pb and U-

Pb dating of ore-stage calcite and Paleozoic fluid flow, Science, 271, 491-493, <u>https://doi.org/10.1126/science.271.5248.491</u>, 1996.

Burisch, M., Walter, B. F. and Markl, G.: Silicification of Hydrothermal Gangue Minerals in Pb-Zn-Cu-Fluorite-Quartz-595 Baryte Veins, The Canadian Mineralogist, 55(3), 501-514, <u>https://doi.org/10.3749/canmin.1700005</u>, 2017.

Burisch, M., Gerdes, A., Meinert, L., Albert, R., Seifert, T., and Gutzmer, J.: The essence of time - fertile skarn formation in
the Variscan Orogenic Belt, Earth Planet. Sci. Lett., 519, 165-170, <u>https://doi.org/10.1016/j.epsl.2019.05.015</u>, 2019.

- CIESM: The Messinian salinity crisis from mega-deposits to microbiology, in: A consensus report. 33ème CIESM Workshop Monographs 33, edited by: Briand, F., CIESM Publisher, Monaco, 91-96, 2008. Clauer, N., Chaudhuri, S., Toulkeridis, T., and Blanc, G.: Fluctuations of Caspian Sea level: beyond climatic variations? Geology, 28, 1015–1018, https://doi.org/10.1130/0091-7613(2000)28<1015:FOCSLB>2.0.CO;2, 2000.
- 345 Conley, R.F., and Bundy W.M.: Mechanism of gypsification, Geochim. Cosmochim. Acta, 15, 57-72, https://doi.org/10.1016/0016-7037(58)90010-3, 1958.

Costanzo, A., Cipriani, M., Feely, M., Cianfione, G., and Dominici, R.: Messinian twinned selenite from the Catanzaro Trough, Calabria, Southern Italy: field, petrographic and fluid inclusion perspectives, Carbonates and Evaporites, 34, 743–756. https://doi .org /10 .1007 /s13146 -019 -00516 -0, 2019.

350 Craig, G., Managh A.J., Stremtan, C., Lloyd, N.S., and Horstwood, M.S.A.: Doubling Sensitivity in Multicollector ICPMS Using High-Efficiency, Rapid Response Laser Ablation Technology, Anal. Chem., 90, 11564-11571, <u>https://doi.org/10.1021/acs.analchem.8b02896</u>, 2018.

Craig, G., Bracciali, L., and Lloyd, N.: LA-ICP-MS for U-(Th)-Pb geochronology: Which analytical capability is right for my laboratory? Thermo Fish. Sci. Smart. Note 30581, 2020.

Deng, X.D., Li, J.W., Luo, T., and Wang, H.Q.: Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry, Contrib Mineral Petr., 172, 71, <u>https://doi.org/10.1007/s00410-017-1389-2</u>, 2017.
Elisha, B., Nuriel, P., Kylander-Clark, A., and Weinberger, R.: Towards in-situ U-Pb dating of dolomites, Geochronology 3, 337-349, <u>https://doi.org/10.5194/gchron-3-337-2021</u>, 2021.

Evans, N.P., Turchyn, A.V., Gázquez, F., Bontognali, R.R., Chapman, H.J., and Hodell, D.A.: Coupled measurements of $\delta^{18}O$

- and δD of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain), Earth Planet. Sci. Lett., 430, 499–510, <u>https://doi.org/10.1016/j.epsl.2015.07.071</u>, 2015.
 Flecker, R., and Ellam, R.M.: Identifying Late Miocene episodes of connection and isolation in the Mediterranean Paratethyan realm using Sr isotopes, Sediment. Geol., 188-189, 189-203. <u>https://doi.org/10.1016/j.sedgeo.2006.03.005</u>, 1999
 Flecker, R., Krijgsman, W., Capella, W., de Castro Martíns, C., Dmitrieva, E., Mayser, J.P., Marzocchi, A., Modestu, S.,
- 365 Lozano, D.O., Simon, D., Tulbure, M., van den Berg, B., van der Schee, M., de Lange, G., Ellam, R., Govers, R., Gutjahr, M., Hilgen, F., Kouwenhoven, T., Lofi, J., Meijer, P., Sierro, F.J., Bachiri, N., Barhoun, N., Alami, A.C., Chacon, B., Flores, Jose A., Gregory, J., Howard, J., Lunt, D., Ochoa, M., Pancost, R., Vincent, S., and Yousfi, M.Z.: Evolution of the Late Miocene Mediterranean Atlantic gateways and their impact on regional and global environmental change, Earth-Sci. Rev., 150, 365-392. <u>https://doi.org/10.1016/j.earscirev.2015.08.007</u>, 2015
- 370 Gerdes, A., and Zeh, A.: Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, Earth Planet. Sci. Lett., 249, 47-61, <u>https://doi.org/10.1016/j.epsl.2006.06.039</u>, 2006.

Gerdes, A., and Zeh, A.: Zircon formation versus zircon alteration — new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt,
Chem. Geol., 261 (3-4), 230-243, https://doi.org/10.1016/j.chemgeo.2008.03.005, 2009.

Grandia, F., Asmerom, Y., Getty, S., Cardellach, E., and Canals, A.: U-Pb dating of MVT ore-stage calcite: implications for fluid flow in a Mesozoic extensional basin from Iberian Peninsula, J. Geochem. Explor., 69, 377-380, https://doi.org/10.1016/S0375-6742(00)00030-3, 2000.

380

Grothe, A., Andreetto, F., Reichart, G.J., Wolthers, M., Van Baak, C.G., Vasiliev, I., Stoica, M., Sangiorgi, F., Middelburg, J.J., Davies, G.R., and Krijgsman, W.: Paratethys pacing of the Messinian Salinity Crisis: low salinity waters contributing to

- gypsum precipitation?, Earth Planet. Sci. Lett., 532, 116029, <u>https://doi.org/10.1016/j.epsl.2019.116029</u>, 2020. Guillong, M., Wotzlaw, J.-F., Looser, N., and Laurent, O.: Evaluating the reliability of U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material, Geochronology, 2, 155-167, <u>https://doi.org/10.5194/gchron-2-155-2020</u>, 2020.
- 385 Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., and Bowring, J. F.: Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology-Uncertainty propagation, age interpretation and data reporting, Geostand. Geoanal. Res., 40, 311-332, <u>https://doi.org/10.1111/j.1751-</u> 908X.2016.00379.x, 2016.

Hsü, K.J., Ryan, W.B.F., and Cita, M.B.: Late Miocene desiccation of the Mediterranean, Nature, 242, 240-244, https://doi.org/10.1038/242240a0, 1973.

- Hsü, K. J., Montadert, L., Ross, D.A., and Neprochnov, Y.P.: Annotated record of the detailed examination of Mn deposits from DSDP Leg 42 (Holes 372 and 379A). Pangaea, <u>https://doi.org/10.1594/PANGAEA.871889</u>, 1978. Supplement to: Worstell, P.J., Mélières, F., Bernoulli, D., Erickson, A.J.; Wright, R., Bizon, G.; Cita, M.B., Müller, C., Kidd, R.B., Fabricius, F.H., Garrison, R.E., Hsü, K.J., and Montadert, L.: Initial Reports of the Deep Sea Drilling Project. Initial Reports of the Deep
- Sea Drilling Project, U.S. Government Printing Office, XLII Pt. 1, 1249 pp + 1244 pp, <u>https://doi.org/10.2973/dsdp.proc.42-1.1978</u>, 1978.

Kameda, K., Hashimoto, Y., Wang., S.-L., Hirai, Y., and Miyahara, H.: Simultaneous and continuous stabilization of As and Pb in contaminated solution and soil by a ferrihydrite-gypsum sorbent, J. Hazard. Mater., 327, 171-179, https://doi.org/10.1016/j.jhazmat.2016.12.039, 2017.

- Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S.: Chronology, causes and progression of the Messinian Salinity Crisis, Nature, 400, 652-655, <u>https://doi.org/10.1038/23231</u>, 1999.
 Krijgsman, W., Stoica, M., Vasiliev, I., and Popov, V. V.: Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis, Earth Planet. Sci. Lett., 290 (1-2), 183-191, <u>https://doi.org/10.1016/j.epsl.2009.12.020</u>, 2010.
 Krijgsman, W., Capella, W., Simon, D., Hilgen, F.J., Kouwenhoven, T.J., Meijer, P.T., Sierro, F.J., Tulbure, M.A., van den
- Berg, B.C.J., van der Schee, M., and Flecker, R.: The Gibraltar Corridor: watergate of the Messinian Salinity Crisis, Mar. Geol., 403, 238-246, <u>https://doi.org/10.1016/j.margeo.2018.06.008</u>, 2018.
 Lenoir, L., Blaise, T., Somogyi, A., Brigaud, B., Barbarand, J., Boukari, C., Nouet, J., and Pagel, M.: Uranium incorporation in fluorite and exploration of U-Pb dating, Geochronology, 3, 197-227, <u>https://doi.org/10.5194/gchron-3-199-2021</u>, 2021.
 Lin, J., Sun, W., Desmarais, J., Chen, N., Feng, R., Zhang, P., Li, D., Lieu, A., Tse, J.S., and Pan, Y.: Uptake and speciation
- 410 of uranium in synthetic gypsum (CaSO₄·2H₂O): applications to radioactive mine tailings, J. Environ. Radioact., 181, 8-17, https://doi.org/10.1016/j.jenvrad.2017.10.010, 2018.

435

Liu, D.J., and Hendry, M.J.: Controls on ²²⁶Ra during raffinate neutralization at the Key Lake uranium mill, Saskatchewan, Canada, App. Geochem., 26, 2113-2120, <u>https://doi.org/10.1016/j.apgeochem.2011.07.009</u>, 2011.

Ludwig, K.R.: User's Manual for Isoplot Version 3.75-4.15: a Geochronological Toolkit for Microsoft Excel, Berkeley 415 Geochronological Center Special Publication, 5, 2012.

Lugli, S., Bassetti, M.A., Manzi, V., Barbieri, M., Longinelli, A., and Roveri, M.: The Messinian 'Vena del Gesso' evaporites revisited: characterization of isotopic composition and organic matter, J. Geol. Soc. Lond., 285, 179-190, http://dx.doi.org/10.1144/SP285.11, 2007.

Lugli, S., Manzi, V., Roveri, M., and Schreiber, B.C.: The primary Lower Gypsum in the Mediterranean: a new facies

- 420 interpretation for the first stage of the Messinian salinity crisis, Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 83-99, https://doi.org/10.1016/j.palaeo.2010.07.017, 2010.
 Mangenot, X., Gasparrini, M., Rouchon, V. and Bonifacie, M.: Basin-scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47) Middle Jurassic carbonates of the Paris Basin depocentre, Sedimentology, 65(1), 123-150, https://doi.org/10.1111/sed.12427, 2018.
- Manzi, V., Gennari, R., Lugli, S., Roveri, M., and Schreiber, B.C.: The Messinian "Calcare di Base" (Sicily, Italy) revisited, Geol. Soc. Am. Bull., 123, 347-370, <u>https://doi.org/10.1130/B30262.1</u>, 2011.
 Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., and Sierro, F.J.: Age refinement of the Messinian salinity crisis onset in the Mediterranean, Terra Nova, 315-322, <u>https://doi.org/10.1111/ter.12038</u>, 2013.
 Manzi, V., Gennari, R., Lugli, S., Persico, D., Reghizzi, M., Roveri, M., Schreiber, B.C., Calvo, R., Gavrieli, I., and Gvirtzman,
- 430 Z.: The onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin, Terra Nova 30 (3), 189-198, https://doi.org/10.1111/ter.12325, 2018.

Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V., Flecker, R., Waldmann, N.D., Spaulding, S.A., Bialik, O.M., and Boudinot, F.G.: Chronology with a pinch of salt: integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity, Earth-Sci. Rev. 194, 374-398. https://doi.org/10.1016/j.earscirev.2019.05.011, 2019

Millonig, L.J., Albert, R., Gerdes, A., Avigad, D., and Dietsch, C.: Exploring laser ablation U-Pb dating of regional metamorphic garnet - The Straits Schist, Connecticut, USA, Earth Planet. Sci. Lett., 552, 116589, <u>https://doi.org/10.1016/j.epsl.2020.116589</u>, 2020.

Montano, D., Gasparrini, M., Gerdes, A., Albert, R., Rohais, S., and Della Porta, G.: In-situ carbonate U-Pb analysis by LA-

440 ICP-MS: From absolute dating to understanding the U-Pb partitioning in lacustrine systems, Goldschmidt 2019 Abstracts, 2323, 2019.

Morales, J., Astilleros, J.M., Jiménez, A., Göttlicher, J., Steininger, R., and Fernández-Díaz, L.: Uptake of dissolved lead by anhydrite surfaces, Appl. Geochem., 40, 89-96, <u>https://doi.org/10.1016/j.apgeochem.2013.11.002</u>, 2014.

Murray, R.C.: Origin and diagenesis of gypsum and anhydrite, J. Sedimen. Res., 34, 512-523, https://doi.org/10.1306/74D710D2-2B21-11D7-8648000102C1865D, 1964.

Natalicchio, M., Dela Pierre, F., Lugli, S., Lowenstein, T.K., Feiner, S.J., Ferrando, S., Manzi, V., Roveri, M., and Clari, P.: Did Late Miocene (Messinian) gypsum precipitate from evaporated marine brines? Insights from the Piedmont Basin (Italy), Geology, 42, 179–182, <u>https://doi.org/10.1130/G34986.1</u>, 2014.

Nuriel, P., Wotzlaw, J.F., Ovtcharova, M., Vaks, A., Stremtan, C., Šala, M., Roberts, N.M.W., and Kylander-Clark, A.R.C.:

450 The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U – Pb geochronology of calcite, Geochronology, 3, 35-47, <u>https://doi.org/10.5194/gchron-3-35-2021</u>, 2021.
Ossorio, M., Van Driessche, A.E.S., Pérez, P., and García-Ruiz, J.M.: The gypsum-anhydrite paradox revisited, Chem. Geol., 386, 16-21, https://doi.org/10.1016/j.chemgeo.2014.07.026, 2014.

Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B., Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P.,

455 Sutcliffe, C., and Davis, D.: Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ¹⁸O water and U-Pb age, Chem. Geol., 481, 1-17, <u>https://doi.org/10.1016/j.chemgeo.2017.12.026</u>, 2018.

Parrish, R. R., Parrish, C. M., and Lasalle, S.: Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England, J. Geol. Soc., 175, 425-442, <u>https://doi.org/10.1144/jgs2017-107</u>, 2018.

460 Petrash, D.A., Bialik, O.M., Bontognali, T.R.R., Vasconcelos, C., Roberts, J.A., McKenzie, J.A., and Konhauser, K.O.: Microbially catalyzed dolomite formation: From near-surface to burial, Earth-Sci. Rev., 171, 558-582, https://doi.org/10.1016/j.earscirev.2017.06.015, 2017.

Piccione, G., Rasbury, E.T., Elliott, B.A., Kyle, J.R., Jaret, S.J., Acerbo, A.S., Lanzirotti, A., Northrup, P., Wooton, K., and Parrish, R.R.: Vein fluorite U-Pb dating demonstrates post-6.2 Ma rare-earth element mobilization associated with Rio Grande rifting, Geosphere, 15, 6, 1958-1972, https://doi.org/10.1130/GES02139.1, 2019.

- rifting, Geosphere, 15, 6, 1958- 1972, <u>https://doi.org/10.1130/GES02139.1</u>, 2019.
 Rouchy, J.M., and Caruso, A.: The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario, Sediment. Geol., 188–189, p. 35–67, <u>https://doi.org/10.1016/j.sedgeo.2006.02.005</u>, 2006.
 Ring, U. and Gerdes, A.: Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc, Tectonics, 35, 1367-1391, <u>https://doi.org/10.1002/2015TC004085</u>,
- 470 2016.
 - Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood, M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U-Pb geochronology, Geochem. Geophy. Geosy., 18, 2807-2814, https://doi.org/10.1002/2016GC006784, 2017.

Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M.,

Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., and Lee, J. K.: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress, and limitations, Geochronology, 2, 33-61, <u>https://doi.org/10.5194/gchron-2-33-2020</u>, 2020.

Roveri, M., Lugli, S., Manzi, V., and Schreiber, B.C.: The Messinian Sicilian stratigraphy revisited: toward a new scenario for the Messinian salinity crisis, Terra Nova, 20, 483-488, <u>https://doi.org/10.1111/j.1365-3121.2008.00842.x</u>, 2008a.

485

480 Roveri, M., Bertini, A., Cosentino, D., Di Stefano, A., Gennari, R., Gliozzi, E., Grossi, F., Iaccarino, S.M., Lugli, S., Manzi, V., and Taviani, M.: A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area, Stratigraphy, 5, 323-342, 2008b.

Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F.J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F.J., Hübscher, C., Meijer, P.T., and Stoica, M.: The Messinian Salinity Crisis: past and future of a great challenge for marine sciences, Mar. Geol., 352, 25-58, <u>https://doi.org/10.1016/j.margeo.2014.02.002</u>, 2014a.

Roveri, M., Lugli, S., Manzi, V., Gennari, R., and Schreiber, B.C.: High-resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation, Mar. Geol., 349, 113-125, https://doi.org/10.1016/j.margeo.2014.01.002, 2014b.

Ryan, W.B.: Decoding the Mediterranean salinity crisis, Sedimentology, 56 (1), 95-136, <u>https://doi.org/10.1111/j.1365-</u> 3091.2008.01031.x, 2009

Schaltegger, U., Schmitt, A.K., and Horstwood, M.S.A.: U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities, Chem. Geol., 402, 89-110. https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015.

Selli, R.: Il Messiniano Mayer-Eymar 1867. Proposta di un neostratotipo, Giornale di Geologia, 28, 1-33, 1960.

495 Seman, S., Stockli, D.F., and McLean, N.M.: U-Pb geochronology of grossular-andradite garnet, Chem. Geol., 460, 106-116, https://doi.org/10.1016/j.chemgeo.2017.04.020, 2017.

Sindern, S., Havenith, V., Gerdes, A., Meyer, F.M., Adelmann, D., and Hellmann, A.: Dating of anatase-forming diagenetic reactions in Rotliegend sandstones of the North German Basin, Int. J. Earth Sci., 108, 1275-1292, https://doi.org/10.1007/s00531-019-01705-x, 2019.

- Sylvester, P.: Matrix effects in Laser ablation-ICP-MS, in: Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, edited by: Sylvester, P., Mineralogical association of Canada, 67-78, 2008.
 Van Driessche, A.E.S., Stawski, T., and Kellermeier, M.: Calcium sulfate precipitation pathways in natural and engineering environments, Chem. Geol., 530, 119274. <u>https://doi.org/10.1016/j.chemgeo.2019.119274</u>, 2019.
 Vasiliev, I., Mezger, E.M., Lugli, S., Reichart, G.J., Manzi, V., and Roveri, M.: How dry was the Mediterranean during the
- 505 Messinian salinity crisis?, Paleogeogr. Paleoclimatol. Paleoecol., 471, 120-133, <u>https://doi.org/10.1016/j.palaeo.2017.01.032</u>, 2017.

Wafforn, S., Seman, S., Kyle, J.R., Stockli, D., Leys, C., Sonbait, D., and Cloos, M.: Andradite garnet U-Pb geochronology of the big Gossan skarn, Ertsberg-Grasberg mining district, Indonesia, Econ. Geol., 113, 769-778, https://doi.org/10.5382/econgeo.2018.4569, 2018.

510 Warren, J.K.: Evaporites: A Geological Compendium, Springer, Berlin, 1813 p, <u>https://doi.org/10.1007/978-3-319-13512-0</u>, 2016.

Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J.A., and Karpoff, A.M.: Bacterially induced dolomite precipitation in anoxic culture experiments, Geology, 28, 1091-1094, <u>https://doi.org/10.1130/0091-</u> <u>7613(2000)28<1091:BIDPIA>2.0.CO;2</u>, 2000.

- Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine, P., and Taylor, E.: U-Pb geochronology of speleothems by MC-ICPMS, Quat. Geochronol., 1, 208-221, <u>https://doi.org/10.1016/j.quageo.2006.08.002</u>, 2006.
 Woodhead, J., Hellstrom, J., Pickering, R., Drysdale, R., Paul, B., and Bajo, P.: U and Pb variability in older speleothems and strategies for their chronology, Quat. Geochronol., 14, 105-113, <u>https://doi.org/10.1016/j.quageo.2012.02.028</u>, 2012.
 Yan, S., Zhou, R.J., Niu, H.C., Feng, Y.X., Nguyen, A.D., Zhao, Z.H., Yang, W.B., Qian, D., and Zhao, J.X.: LA-MC-ICP-
- 520 MS U-Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanic-hosted iron mineralization system, Awulale belt, Central Asia, GSA Bulletin, 132 (5-6), 1031-1045, <u>https://doi.org/10.1130/B35214.1</u>, 2020 Yang, Y.H., Wu, F.Y., Yang, J.H., Mitchell, R.H., Zhao, Z.F., Xie, L.W., Huang, C., Ma, Q., Yang, M., and Zhao, H.: U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 33, 231-239, <u>https://doi.org/10.1039/c7ja00315c</u>, 2018.
- 525 Zachariasse, W.J., van Hinsbergen. D.J.J., and Fortuin, A.R.: Mass wasting and uplift on Crete and Karpathos during the early Pliocene related to initiation of south Aegean left-lateral, strike-slip tectonics, Geol. Soc. Am. Bull., 120, 976–993, <u>https://doi.org/10.1130/B26175.1</u>, 2008.